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In monolayer hexagonal lattices, the intravalley and intervalley scattering of electrons can involve
chiral phonons at Brillouin-zone center and corners, respectively. At these high-symmetry points,
there is a three-fold rotational symmetry endowing phonon eigenmodes with a quantized pseudo
angular momentum, which includes orbital and spin parts. Conservation of pseudo angular momen-
tum yields selection rules for intravalley and intervalley scattering of electrons by phonons. Concrete
predictions of helicity resolved optical phenomena are made on monolayer molybdenum disulfide.
The chiral phonons at Brillouin-zone corners excited by polarized photons can be detected by a
valley phonon Hall effect. The chiral phonons, together with phonon circular polarization, phonon
pseudo angular momentum, selection rules, and valley phonon Hall effect will extend the basis for
valley-based electronics and phononics applications in the future.

PACS numbers: 63.22.-m, 72.10.Di, 72.90.+y

Due to inversion symmetry breaking, valley-
contrasting electronic physics proposed by Xiao et

al. in 2007 [1] has attracted a growing interest in
the manipulation of the valley degree of electrons
since it has potential applications in valley-dependent
optoelectronics [2] and coupled spin and valley physics
[3]. Besides charge and spin, separated valleys in
momentum space constitute another discrete degrees
of freedom for electrons with long relaxation time,
which leads to emergence of valleytronics, such as
valley polarization, valley current, and valley coherence
on transition-metal dichalcogenides (TMD) materials
[4–10]. The valley electron interband scattering involves
a polarized photoexcitation and photoluminescence;
however, the intervalley electron scattering will involve
Brillouin-zone-corner (valley) phonons [7]. Given the
fact that electrons have definite chirality at valleys, a
natural question then arises: whether do valley phonons
have chirality and how does the chirality play a role in
electronic intervalley scattering?

Very recently, the helicity-resolved Raman scat-
tering has experimentally observed in TMD atomic
layers[11], where the authors found Brillouin-zone-center
(Γ) phonons can completely reverse the helicity of inci-
dent photons. Such finding implies that besides the valley
phonons, the Γ phonons involved in the intravalley scat-
tering of electrons can also have chirality. Therefore, it is
highly desirable to investigate phonon chirality at these
high-symmetry points in Brillouin zone of the hexagonal
lattices and their applications in valleytronics.

In this Letter, we observe chiral phonons at Brillouin-
zone center and corners of honeycomb lattices. The
three-fold rotational symmetry at these high-symmetry
points allows us to label phonon eigenmodes with pseudo
angular momentum (PAM). The lack of inversion symme-
try within the plane and the fact that time reversal sym-

metry is broken at K and K
′ points are the fundamen-

tal reasons why valley phonon modes are non-degenerate
and have definite PAM. At the Γ point where time rever-
sal symmetry is presented, phonon modes with opposite
pseudo angular momenta become degenerate. The chi-
rality of phonons at these high-symmetry points not only
decides the selection rules in both intravalley and inter-
valley electronic scattering but also can endow phonon-
ics with other potential effects, e.g., valley phonon Berry
curvature and valley phonon Hall effect. And near these
high-symmetry points phonon has extremes in disper-
sion and thus a large density of states. Therefore chi-
ral phonons will play an important role in valleytronics,
especially in intravalley or intervalley scattering of elec-
trons or holes.

Chirality of phonons. To study chiral phonons,
we first focus on a two-dimensional honeycomb lattice
model, where each unit cell has two sublattices A and
B. The honeycomb AB lattice can serve as a simplified
model to demonstrate general features of chiral phonons
in monolayer materials, such as gapped graphene with
isotopic doping [12] or staggered sublattice potential [13],
hexagonal boron nitride[14]. From calculated eigenvec-
tors, we can plot sublattice vibrations at valleys as shown
in the insets of Fig. 1(a). At valleys, all the vibrations are
circularly polarized. For valley phonon modes of band 1
and 4, the two sublattices do opposite circular motions;
for band 2 and 3 while one sublattice is still the other
sublattice does a circular motion. From valley K to K

′,
all the circular motions will change to opposite directions,
thus in latter discussion we will focus on one of the val-
leys while results at the other one are achieved by time
reversal symmetry.

The phonon chirality can be characterized by polar-
ization of phonons, which comes from the circular vi-
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FIG. 1: Valley phonons in a honeycomb AB lattice. (a)
Phonon dispersion relation of a honeycomb AB lattice. The
insets show phonon vibrations for sublattices A and B in one
unit cell at K′ (kx = − 4π

3a
, ky = 0) and K (kx = 4π

3a
, ky = 0),

numbers 1 to 4 denote four bands. The radii of circles de-
note vibration amplitudes; phase and rotation direction are
included. (b) Phase correlation of phonon non-local part for
sublattice A (upper two panels) and sublattice B (lower two
panels) at (K′) (left) and K (right). (c) Phonon pseudo an-
gular momentum (PAM) for bands 1 to 4 at valleys K

′ and
K. Here, the longitudinal spring constant KL = 1, the trans-
verse one KT = 0.25, and mA = 1, mB = 1.2. The primitive
vectors are (a, 0) and (a/2,

√
3a/2), and the phonon energy ε

equals to h̄ωph

.

bration of sublattices. To consider the polarization
along z direction, we look at the phonon eigenvectors
ǫ = (x1 y1 x2 y2)

T (here we take a two-sublattice unit cell
as an example, for a general case see Supplementary in-
formation Sec. I [15]). By defining a new basis where one
sublattice has right-handed or left-handed circular po-
larization as |R1〉 ≡ 1√

2
(1 i 0 0)T ; |L1〉 ≡ 1√

2
(1 − i 0 0)T ;

|R2〉 ≡ 1√
2
(0 0 1 i)T ; |L2〉 ≡ 1√

2
(0 0 1 − i)T , the phonon

eigenvector ǫ can be represented as

ǫ =

n
∑

α=1

ǫRα
|Rα〉+ ǫLα

|Lα〉, (1)

where ǫRα
= 〈Rα| ǫ〉 =

1√
2
(xα − iyα), ǫLα

= 〈Lα| ǫ〉 =
1√
2
(xα + iyα). Then the operator for phonon circular

polarization along z direction can be defined as

Ŝz ≡

n
∑

α=1

(|Rα〉 〈Rα| − |Lα〉 〈Lα|), (2)

and the phonon circular polarization equals to

szph = ǫ†Ŝzǫh̄ =

n
∑

α=1

(

|ǫRα|
2
− |ǫLα|

2
)

h̄, (3)

here n = 2 for two-sublattice unit cells. The phonon
circular polarization can have a value between ±h̄ since
∑

α

|ǫRα
|
2
+ |ǫLα

|
2
= 1. The szph has the same form with

that of phonon angular momentum jz
k,σ along z direction

[16] (see Supplementary information Sec. I [15]). The
contribution from each sublattice in one unit cell to the
phonon circular polarization is szα, which equals to ǫ†Ŝz

αǫh̄

with Ŝz
α = |Rα〉 〈Rα| − |Lα〉 〈Lα|. In Fig. 1(a), at valley

K, szA = 0, szB = −h̄ for band 2 while szA = h̄, szB = 0 for
band 3, where the phonon circular polarization happens
to be quantized; for band 1 and 4, sublattice A and B do
opposite circular vibration with different magnitude of
sA,B. Therefore phonon circular polarization szph at val-
leys can be nonzero. By introducing a staggered sublat-
tice onsite potential, the similar chiral phonons at valleys
can also be observed; and the chiral valley phonons can
be observed in graphene systems with introducing iso-
tope doping (please see Supplementary information Sec.
II and III [15]).

At the zone center Γ, as shown in Fig. 1(a), there are
doubly degenerate acoustic modes (LA and TA) and dou-
bly degenerate optical modes (LO and TO) which are
not circularly polarized; however, we can obtain circular
polarized phonon modes by superposition of the degen-
erated modes.

Phonon pseudo angular momentum. In a honey-
comb lattice, at high-symmetry points Γ,K,K ′ phonons
are invariant under a three-fold discrete rotation about
the direction (z) perpendicular to the lattice plane. Un-

der the rotation, one can obtainℜ(2π3 , z)uk = e−i 2π
3
lkphuk,

where lkph is defined as the PAM of phonon with wave
function uk and has values of ±1 or 0. The phase corre-
lation of the phonon wave function comes from two parts,
one is from local (intra-cell) part ǫk,σ, another is from the
non-local (inter-cell) part eiRl·k. Thus under a three-fold
rotation, one can obtain spin PAM ls for the local part
and orbital PAM lo for the non-local part.

The orbital PAM can be obtained from phase change
under a three-fold rotation, which is shown in Fig. 1 (b).
We can obtain loA = τ and loB = −τ , τ = ±1 labels the
two valleys K and K

′. At Γ point, there is no phase
change for both sublattices under a three-fold rotation,
thus loA = loB = 0. Both circular polarization |Rα〉 and
|Lα〉 are eigenstates of the operator ℜ(2π3 , z) with PAM
lsR = 1 and lsL = −1 respectively. Therefore, in Fig. 1(a),
at valley K, lsA = −1, lsB = 1 for band 1 and 4, lsB = −1
for band 2 and lsA = 1 for band 3. Since phonon wave
function must be an eigenstate of the rotation opera-
tor, PAM of phonon equals lph = lsA + loA = lsB + loB if
both sublattices are vibrating; if one is still, it is decided
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FIG. 2: Valley phonons emitted in hole intervalley
scattering in MoS2. The exciton is excited by a right polar-
ized photon with energy (∆) at K valley. (a) By absorbing a
stimulated right-handed photon with energy (λKv + h̄ω), the
excited hole in valence band is scattered to the other valley
K

′ by emitting a valley phonon with energy h̄ω and PAM
lph = −1. (b) A stimulated left-handed photon is absorbed
and a phonon with lph = 1 is emitted. The pseudo angular
momenta of electrons in conduction band and valence band
(lv(c) = ±1, 0) are also marked.

by the other vibrating sublattice. Therefore we can ob-
tain phonon PAM as listed in Fig. 1 (c). At Γ point,
lph = lsA = lsB since orbital PAM is zero. By superpo-
sition of the doubly degenerated modes, sublattices do
the same circular vibration, which can be right-handed
or left-handed. Thus the phonon PAM can be ±1 for
doubly degenerated modes.

At high-symmetry points where the three-fold ro-
tational symmetry holds, the PAM of non-degenerate
phonon modes must be ±1 or zero. Since a three-fold
rotation center can be chose at any sublattice in a unit
cell when the orbital PAM of this sublattice will be zero,
the spin PAM of the sublattice must be equal to phonon
PAM, that is, it must also be ±1 or zero. Therefore as
shown in Fig. 1(a), for all phonon modes at valleys sub-
lattices must do circularly polarized vibrations otherwise
they are still. For three-dimensional vibrations, the out-
of-plane modes (ZA or ZO modes) are also an eigenstate
of the three-fold rotation with PAM of lph = 0.

Selection rules. For electrons with zero moment along
the normal direction of the plane (z), the state is in-
variant under a three-fold rotation, the PAM is decided
by the orbits on sublattice A or B. Based on the lattice
structure in Fig. 1 (b), if we assume the valence band
corresponds to the orbit on sublattice A and the conduc-
tion band corresponds to the orbit on sublattice B, we
can obtain all the pseudo angular momenta lc(v) = ∓τ .
Therefore, due to conservation of PAM, one can expect
an azimuthal selection rule lc − lv = lphoton = ±τ for
interband transition by photons with right (σ+) or left
(σ−) circular polarization in the gapped graphene. The
excited electron in the conduction band can have an in-

travalley scattering by a phonon at Γ, and then com-
bines with the hole in the valence band by emitting an-
other photon. This process is called as the first order
Raman scattering (e.g. G-peak in Graphene). In this
process, due to the conservation of PAM, we have a selec-
tion rule as ∆lphoton = lph. Since the doubly degenerate
optical modes at Γ are Raman active and have pseudo
angular momenta of ±1, thus we can expect a helicity-
resolved Raman G-peak in honeycomb lattices, which
can be gapped graphene or boron nitride monolayer. In
the whole process, the incident right (left) handed pho-
ton absorbs a right (left) handed phonon or emits a left
(right) handed phonon then changes its helicity to be a
left (right) handed photon. Such selection rule explains
the helicity resolved Raman scattering in layered TMD
as reported in Ref. [11]. For the out-of-plane phonon
involving only chalcogen atoms as well as the low energy
breathing modes, they have lph = 0 thus the helicity of
the incident photon will not change.

It is well known that in graphene the double resonance
D-peak in Raman spectrum is related to phonon modes in
the vicinity of the K point during the intervalley scatter-
ing [17, 18]. In the intervalley scattering by phonon the
whole system has three-fold rotational symmetry, thus we
can expect a selection rule from the conservation of PAM,
that is lc(v)(K)− lc(v)(K

′) = ±1 by emitting a circularly
polarized valley phonon (lph = ±1), where momentum
and energy conservations are also applied. Thus we can
expect an valley phonon with a specific PAM can be cre-
ated. Due to the PAM of valley phonons are different,
we can observe a circularly polarized infrared spectrum
during the valley phonon interband scattering (please see
Supplementary information Sec. IV for the detailed dis-
cussion [15]).

With spin-orbit coupling MoS2 has a bandgap of ∆ =
1.65eV and a spin-splitting for the highest valence band
at K valley λKv = 150 meV as shown in Fig. 2, while
for the lowest conductance band there is a 3 meV split-
ting which can be negligible [21]. With a photon ab-
sorbtion or emission we can expect to observe inter-
valley electron scattering at valley centers involving a
valley center phonon, where the selection rules imply
∆lel = ±lph± lphoton and λK = ±h̄ωph± h̄ωphoton, where
’+’ means emission and ’−’ means absorbtion. For mono-
layer MoS2, at valleys the PAM of electrons in the con-
duction band are ±1 while they are zero for the valence
band [4]. Through a right-handed polarized photon a pair
of exciton are excited at K valley as shown in Fig. 2,
where the blue lines correspond to the absorption of a
right-handed photon with energy ∆. Since the excited
electron is in the valley center, which cannot be scattered
to another valley through emitting a phonon. However,
due to the large spin-splitting of valence band the hole
can be scattered to another valley by absorbing a stim-
ulated circularly polarized photon and emitting a chiral
valley phonon, where the spin of electron is fixed. Us-
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TABLE I: Chiral phonons in K Valley of MoS2. Mono-
layer MoS2 has 9 modes (n) of phonon with energy h̄ωph

(meV), Mo and S are located in A and B respectively as show
in Fig. 1 (b) in the main text, thus the orbital PAM loMo = 1
and loS = −1. szMo (szS), l

s
Mo (lsS), and lph are circular polar-

izations of Mo (S), spin pseudo angular momenta of Mo (S),
and phonon PAM. The Mirror symmetry (MS) is relative to
the plane of the monolayer of MoS2; it is 1 (-1) if the mode is
even (odd) under the mirror symmetry operation.

n h̄ωph szMo szS lsMo lsS lph MS

1 14.4 0.64 0 1 0 -1 1

2 21.5 0 -0.34 0 -1 1 -1

3 31.9 -0.18 0.41 -1 1 0 1

4 40.0 0 -0.50 0 -1 1 1

5 40.2 0 0 - - 0 -1

6 41.5 0 0.50 0 1 0 1

7 45.1 0 -0.40 0 -1 1 -1

8 48.0 0.06 0 1 0 -1 1

9 49.2 -0.34 0.33 -1 1 0 1

ing the Quantum-Espresso code [22], we obtain phonons
for all bands at valleys as shown in Table I (please see
Supplementary information Sec. V [15]). At K valley,
phonons with energy 14.4 and 48.0 meV have PAM of
lph = −1 and phonons of 21.5, 40.0 and 45.1 meV have
lph of 1.

As shown in Fig. 2(a), through a stimulated right-
handed light scanning on the sample, we can observe
certain resonance peak on λKv+ h̄ωph where the emitted
chiral phonon carries a PAM of lph = −1 at K point due
to the selection rules at valleys. The resonance peak is at
164.4 meV (another peak of 198.0 meV is not obvious due
to the small polarization of 48.0 meV phonon). And for a
stimulated left-handed photon in Fig. 2(b), we can only
observe one peak of 190.0 meV correspond to phonon
mode of 40.0 meV while the other two modes will not be
involved since they are odd under mirror operation (see
Table I) since in the scattering process the whole system
keeps even under a mirror operation relative to the x-y
plane. After scattered by phonon and photon, the pair of
electron and hole locate in different valleys which is con-
sistent with the recent founding of low-energy excitons
with a large momentum [23]. Similarly, a chiral phonon
at K ′ can be emitted in the scattering of hole of an ex-
citon at K ′ valley which can be excited by a left-handed
photon with 1.65 eV. Therefore, a specific chiral phonon
at a definite valley can be obtained through a stimulated
photon. With the two-step polarized light shinning on
the sample, a large number of valley phonons with defi-
nite frequencies can be created.

Valley phonon Hall effect. In the presence of an
in-plane electric field, an electron will acquire an anoma-
lous velocity proportional to the Berry curvature in the
transverse direction [24, 25]. Recently the electronic

strain gradient

(a)

(b)

(c) strain gradient

FIG. 3: Phonon Berry curvature and valley phonon
Hall effect in a honeycomb lattice. (a) Berry curvature
of band 1 (bottom contour plot) and band 2 (top 3D plot).
Band 3 (Band 4) has phonon angular momentum opposite to
that of band 2 (band 1). (b) ((c)) Schematic of valley phonon
Hall effect (Hall current denoted by olive curve arrows) under
a strain gradient (orange arrows), where valley phonons are
excited by a ray of right-handed or left-handed polarized light
(red wave lines). The parameters are the same with those in
Fig. 1.

valley Hall effect proposed in [1] has been experimen-
tally observed in monolayer MoS2 transistors [26] and in
graphene superlattices [27]. As discussed above, phonons
with definite frequencies at a specific valley can be mas-
sively created, thus for valley phonons, if its Berry cur-
vature is nonzero we can also expect to observe valley
phonon Hall effect in the presence of an in-plane gradient
strain field. Such valley phonon Hall effect can provide
us another way to observe valley phonons.

With the breaking of spatial inversion symmetry we
observe nonzero phonon Berry curvature at valleys as
shown in Fig. 3 (a) (see Supplementary information Sec.
VI for derivation [15]). Band 2 and band 3 have large
Berry curvatures at valleys, while those of band 1 and 4
are small. Due to the nonzero phonon Berry curvature,
applying a strain gradient Estrain along x direction,
phonons excited at a different valley will go to a different
transverse direction since vanom ∝ −Estrain ×Ω in anal-
ogy to electrons. If the photon polarization is reversed,
the transverse phonon current would be reversed as
shown in Fig. 3 (b) and (c). With the accumulation of
phonons on one edge, people can measure a temperature
difference along the transverse direction. The tempera-
ture difference changes sign if the circular polarization
of the stimulated photon is reserved. Phonon Hall
effect has been observed in a paramagnetic insulator
[28] where a magnetic field can distort phonon trans-
port thus a transverse temperature difference can be
observed, which has attracted many studies in this field
[29–31]. The Berry curvature induced transverse valley
phonon Hall effect at nonmagnetic systems with in-
version symmetry broken would attract new applications.
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