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We show that the entropy of a message can be tested in a device-independent way. Specifically, we
consider a prepare-and-measure scenario with classical or quantum communication, and develop
two different methods for placing lower bounds on the communication entropy, given observable
data. The first method is based on the framework of causal inference networks. The second tech-
nique, based on convex optimization, shows that quantum communication provides an advantage
over classical, in the sense of requiring a lower entropy to reproduce given data. These ideas may
serve as a basis for novel applications in device-independent quantum information processing.

The development of device-independent (DI) quan-
tum information processing has attracted growing at-
tention recently. The main idea behind this new
paradigm is to achieve quantum information tasks, and
guarantee their secure implementation, based on ob-
served data alone. Thus no assumption about the in-
ternal working of the devices used in the protocol is
in principle required. Notably, realistic protocols for
DI quantum cryptography [1] and randomness genera-
tion [2, 3] were presented, with proof-of-concept exper-
iments for the second [3, 4].

The strong security of DI protocols finds its origin
in a more fundamental aspect of physics, namely the
fact that certain physical quantities admit a model-
independent description and can thus be certified in a
DI way. The most striking example is Bell nonlocal-
ity [5, 6], which can be certified (via Bell inequality vi-
olation) by observing strong correlations between the
results of distant measurements. Notably, this is possi-
ble in quantum theory, by performing well-chosen local
measurements on distant entangled particles. More re-
cently, it was shown that the dimension of an uncharac-
terized physical system (loosely speaking, the number
of relevant degrees of freedom) can also be tested in a
DI way [7–10]. Conceptually, this allows us to study
quantum theory inside a larger framework of physi-
cal theories, which already brought insight to quan-
tum foundations [11–14]. From a more applied point
of view, this allows for DI protocols and for black-box
characterization of quantum systems [15–20].

In the present work, we show that another physical
quantity of fundamental interest, namely the entropy of
a message, can be tested in a DI way. Specifically, we
present simple and efficient methods for placing lower
bounds on the entropy of a classical (or quantum) com-
munication based on observable data alone. We con-
struct such “entropy witnesses” following two different
approaches, first using the framework of causal infer-
ence networks [21], and second using convex optimiza-
tion techniques. The first construction is very general,

FIG. 1. Prepare-and-measure scenario. (a) Black-boxes rep-
resentation. (b) Representation as a DAG. (c) Finer descrip-
tion of the prepare-and-measure scenario where the number
of measurements is explicitly taken in to account.

but usually gives suboptimal bounds. The second con-
struction allows us to place tight bounds on the entropy
of classical messages for given data. Moreover, it shows
that quantum systems provide an advantage over clas-
sical ones, in the sense that they typically require lower
entropy to reproduce a given set of data.

The interest in placing DI bounds on entropy is two-
fold. First, from a conceptual point of view, this shows
that a key concept in both classical and quantum in-
formation theory can be tested in a model independent
manner. Moreover, the methods we develop here al-
low one to compare entropy in classical and quantum
theory. Second, from the point of view of applications
our work may open novel possibilities for partially DI
quantum information processing, as we discuss at the
end of the paper.

Scenario.—We consider the prepare-and-measure sce-
nario depicted in Fig. 1(a). It features two uncharac-
terized devices, hence represented by black-boxes: a
preparation and a measurement device. Upon receiving
input x (chosen among n possible settings), the prepa-
ration device sends a physical system to the measuring
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device. The state of the system may contain informa-
tion about x. Upon receiving input y (chosen among l
settings) and the physical system sent by the prepara-
tion device, the measuring device provides an outcome
b (with k possible values). The experiment is thus fully
characterized by the probability distribution p(b|x, y).
The inputs x, y are chosen by the observer, from a dis-
tribution p(x, y), which will be taken here to be uniform
and independent, i.e. p(x) = 1/n and p(y) = 1/l (un-
less stated otherwise). A set of data p(b|x, y) will also
be represented using the vector notation p; the nlk com-
ponents of p giving the probabilities p(b|x, y).

Our main focus is the entropy of the mediating phys-
ical system, and our main goal will be to lower bound
this entropy in a DI way, that is, based only on the ob-
servational data p. We will consider both cases in which
the mediating physical system is classical and quantum.

Let us first consider the quantum case. For each in-
put x, the preparation device sends a quantum state
$x (in a Hilbert space of finite dimension d). We are
interested in the von Neumann entropy of the average
emitted state

S($) = −tr($ log $) where $ = ∑
x

p(x)$x. (1)

Specifically we want to find the minimal S($) that is
compatible with a given set of data, i.e. such that there
exist states $x and measurement operators Mb|y (acting
on Cd) such that p(b|x, y) = tr($x Mb|y). Note that in
general we want to minimize S($) without any restric-
tion on the dimension d.

In the case of classical systems, for each input x,
a message m ∈ {0, ..., d − 1} is sent with probability
p(m|x). The average message M is given by the distri-
bution p(m) = ∑x p(m|x)p(x), with Shannon entropy

H(M) = −
d−1

∑
m=0

p(m) log p(m). (2)

Again, for a given set of data, our goal is to find the
minimal entropy compatible with the data, considering
systems of arbitrary finite dimension d.

Entropy vs dimension.— Since our goal is to derive DI
bounds on the entropy without restricting the dimen-
sion our work is complementary to that of Gallego et
al. [10], where DI bounds on the dimension were de-
rived. While the work of Ref. [10] derived DI lower
bounds on worst case communication, our goal is to
place DI lower bounds on the average communication.

More formally, Ref. [10] presented so-called (linear)
dimension witnesses, of the form

V(p) = v · p = ∑
x,y,b

vxyb p(b|x, y) ≤ Ld, (3)

with (well-chosen) real coefficients vxyb and bound Ld.
The inequality holds for any possible data generated

with systems of dimension (at most) d. Hence if a given
set of data p is found to violate a dimension witness,
i.e. V(p) > Ld, then this certifies the use of systems of
dimension at least d + 1.

In this work, we look for entropy witnesses, that is,
functions W which can be evaluated directly from the
data p with the following properties. First, for any p
requiring a limited entropy, say H ≤ H0, we have that

W(p) ≤ L(H0). (4)

Moreover, there should exist (at least) one set of data
p0 such that W(p0) > L(H0), thus requiring entropy
H > H0. The problem is defined similarly for quantum
systems, replacing the Shannon entropy with the von
Neumann entropy.

Before discussing methods for constructing entropy
witness, it is instructive to see that DI tests of en-
tropy and dimension are in general completely differ-
ent. Specifically, we show via a simple example, that
certain sets of data may require the use of systems of
arbitrarily large dimension d, but vanishing entropy.

Consider a prepare-and-measure scenario, and a
strategy using classical systems of dimension d + 1. We
consider n = d2 choices of preparations, and l = n− 1
choices of measurements, each with binary outcome
b = ±1. Upon receiving input x ≤ d, send message
m = x; otherwise, send m = 0. The entropy of the aver-
age message (with uniform choice of x) is found to be
H(M) = (2/d) log(d) − (1 − 1/d) log(1 − 1/d) which
tends to zero when n → ∞ (and hence d → ∞). How-
ever, the corresponding set of data, p0, cannot be repro-
duced using classical systems of dimension d. This can
be checked using a class of dimension witnesses [10]:

In(p) =
n−1

∑
y=1

E1y +
n

∑
x=2

n+1−x

∑
y=1

vxyExy ≤ Ld (5)

where Exy = ∑b=±1 b p(b|x, y) and vxy = 1 if x + y ≤
n and − 1 otherwise. For the above strategy, we obtain
In(p0) > Ld = n(n− 3)/2 + 2d− 1. Therefore, the data
p0 requires dimension at least d + 1 which diverges as
n→ ∞, but has vanishingly small entropy in this limit.

Entropy Witnesses I.—The above example shows that
testing entropy or dimension are distinct problems.
Thus new methods are required for constructing DI en-
tropy witnesses. We first discuss a construction based
on the entropic approach to causal inference [21–24].
To the prepare-and-measure scenario of Fig. 1a, we as-
sociate a directed acyclic graph (DAG) depicted in Fig.
1b. Each node of the graph represents a variable of the
problem (inputs X, Y, output B, and message M), and
the arrows indicate causal influence. Moreover, we al-
low the devices to act according to a common strategy,
represented with an additional variable Λ (taking val-
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ues λ, with distribution p(λ)). We thus have that

p(b|x, y) = ∑
λ,m

p(b|y, m, λ)p(m|x, λ)p(λ). (6)

The key idea behind the entropic approach in the
classical case is the fact that the causal relationships of
a given DAG are faithfully captured by linear equations
in terms of entropies [22]. These relations, together with
the so-called Shannon-type inequalities (valid for a col-
lection of variables, regardless of any underlying causal
structure), define a convex set (the entropic cone) which
characterizes all the entropies compatible with a given
causal structure. Note that for the quantum case, a sim-
ilar analysis can be pursued, with the only notable dif-
ference that causal relations of the form (6) must be re-
placed with data-processing inequalities; see [25] Sec. I
and Ref. [23] for more details.

Using the methods of [23], we characterized the facets
of the entropic cone for the DAG of Fig. 1(b). In the
quantum case, the only non-trivial facet is given by

S($) ≥ I(X : Y, B), (7)

where I(X : Y) = H(X) + H(Y)− H(X, Y) is the mu-
tual information. Note that for the classical case, the
Shannon entropy H(M) replaces S($). The above in-
equality, which in fact follows directly from Holevo’s
bound [26], provides a simple and general bound
for the entropy for given data, valid for an arbitrary
number of preparations, measurements, and outcomes.
However, this comes at the price of a very coarse-
grained description of the data, and therefore will typ-
ically provide a poor lower bound on the entropy.

It is possible to obtain a finer description by account-
ing explicitly for the fact that the number of measure-
ments l is fixed. To do so, we replace the variables Y, B
with l new variables By, and split the variable X into
l separate variables X = (X1, . . . , Xl); considering here
n = rl for some integer r [27].

We first discuss the case of l = 2 measurements. The
corresponding DAG is illustrated in Fig. 1(c). Applying
again the methods of Ref. [23], we find a single non-
trivial inequality (up to symmetries)

S($) ≥ I(X1 : B1) + I(X2 : B2)

+ I(X1 : X2|B1)− I(X1 : X2).
(8)

A general class of entropy witnesses can be obtained by
extending the above inequality to the case of l measure-
ments (details in [25] Sec. I.D):

S($) ≥
l

∑
i=1

I(Xi : Bi) +
l

∑
i=2

I(X1 : Xi|Bi)

−
l

∑
i=1

H(Xi) + H(X1, . . . , Xl).

(9)

These witnesses give relevant (although usually subop-
timal) bounds on S($). For instance, we show in [25]
Sec. 2 that the maximal violation of the dimension wit-
nesses In(p) (given in (5)), which implies the use of sys-
tems of dimension d = n [10], also implies maximal
entropy, i.e. S($) ≥ log n.

Similar entropy witnesses can be derived for the case
of classical communication, by simply replacing S($)
with H(M) in (8) and (9). Note that (9) is reminiscent
of the principle of information causality [13], but con-
sidering here a prepare-and-measure scenario [14, 28].
That is, we consider classical correlations and quantum
communication rather than quantum correlations and
classical communication. Thus, these witnesses can-
not distinguish classical from quantum systems. More
specifically, given a set of data, the classical and quan-
tum bounds on the entropy will be the same, although
this may not be the case in general, as we will see below.

To summarize, the entropic approach allows us to de-
rive compact and versatile entropy witnesses, for sce-
narios involving any number of preparations, measure-
ments and outcomes. Moreover, the bounds obtained
on the entropy are valid for systems of arbitrary finite
dimension. Nevertheless, this approach has an impor-
tant drawback, namely that the obtained bounds typi-
cally underestimate the minimum entropy actually re-
quired to produce a given set of data. This is because
there exist in general many different sets of data giv-
ing rise to the same value of the witness [29], e.g. the
LHS of (9). The entropy bound will thus correspond to
the lowest possible value S($) among these sets of data.
Below we investigate a different approach, which better
exploits the structure of the data. Moreover, this tech-
nique will allow one to distinguish between classical
and quantum systems, contrary to the above witnesses.

Entropy witnesses II.— We now discuss a method for
placing bounds on the entropy using the entire set of
data p. This method can then be simplified to make use
of only linear functions of the probabilities p(b|x, y); in
this case, we shall see that entropy witnesses can be di-
rectly constructed from dimension witnesses. This will
allow us to show that, in the DI setting, quantum sys-
tems can outperform classical ones in terms of entropy.

Consider the case of classical communication. At first
sight, one of the main difficulties is that we need to
consider strategies involving messages of arbitrary di-
mension. However, notice that in the case of a finite
number n of preparations, we can focus on messages
of dimension d ≤ n without loss of generality (see [25]
Sec. III). It then follows that we have a finite number D
of deterministic strategies labeled by λ. For each strat-
egy, the message m is given by a deterministic func-
tion, gλ(x), and the output b is given by a determin-
istic function fλ(y, m). Then, any set of data can be
decomposed as convex combination over the determin-
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FIG. 2. Minimum values of H(M) and S($) compatible with a
given value of witnesses I3 or I4. Curves for classical (dotted)
and quantum (solid) strategies are shown. The use of quan-
tum strategies allow for a significant reduction in the commu-
nication entropy.

istic strategies. More formally, we thus write p = Aq,
where q is a D-dimensional vector with components
qλ = p(λ) representing the probability to use strategy
λ, and ∑λ qλ = 1. The matrix A, of size nlk × D, has
elements A(xyb),λ = δb, fλ(y,m)δm,gλ(x).

The problem can thus be expressed as follows

min H(M) s.t. Aq = p, qλ ≥ 0 and ∑
λ

qλ = 1. (10)

where the minimization is taken over all possible con-
vex combinations of deterministic strategies that repro-
duce p. Notice that this set of possible convex decom-
positions of p forms a polytope Q (in the space of q).
Thus, although the objective function H(M) is not lin-
ear in q, this problem can be addressed by noting that
H(M) is concave in q. It follows that the minimum of
H(M) will be obtained for one of the vertices of Q.

The above procedure is analytical, and can therefore
be applied for any given p, in principle. However, it is
computationally too demanding, even in the simplest
cases, mainly due to the characterization of the poly-
tope Q. We thus further simplify the problem. First,
we consider specific linear functions of the data V(p)
(instead of the entire data p). The first condition in
(10) thus becomes V(Aq) = V(p). Moreover, we notice
that this condition implies constraints on the distribu-
tion of the message p(m), which can be characterized
via a finite number of linear programs (see [25] Sec. IV
for details).

We apply this method to the linear dimension wit-

nesses In(p) (see (5)) for n ≤ 5 (in [25] Sec. IV we also
discuss the 2→ 1 random access code). For each value
of the witness In, we obtain the minimum on the en-
tropy H(M) compatible with it. Results for n = 3, 4
are shown on Fig. 2. Clearly min H(M) is a non-trivial
function of In, for which we obtained (up to numeri-
cal precision) an explicit form for the entropy witness.
Given a value of In in the range Ld−1 ≤ In ≤ Ld (i.e.
requiring a d-dimensional message), the following wit-
ness holds:

H(M) ≥ d− 2
n

log n− α log α− β log β, (11)

where α = (2− (Ld − In))/2n, β = 1− α− (d− 2)/n.
Moreover, this witness turns out to be tight, as the in-
equality can be saturated using a simple strategy. Upon
receiving input x ≤ d − 2, send message m = x; if
x = d− 1, send m = 0 with probability p = (Ld− In)/2,
and send m = d− 1 with probability (1− p); otherwise
send m = 0. The entropy of the average message is
then given by the right hand side of (11). Note that this
strategy uses messages of dimension d. Hence, minimal
entropy can be achieved using the lowest possible di-
mension. Another interesting feature is that no shared
correlations between the preparation and measurement
devices are needed. We also notice that, perhaps sur-
prisingly, (11) turns out to provide optimal entropy for
all dimension witnesses that we have tested (see [25]
Sec. IV). Whether this strategy is optimal for any di-
mension witness is an interesting open question. In
any case, (11) provides a non-trivial upper bound on
min H(M). We refer to [25] Sec. VII for a comparison
between (11) and the entropy inequality (9).

A relevant question is now to see if the use of quan-
tum communication may help reducing the entropy.
That is, for a given witness value, we ask what is the
lowest possible entropy achievable using quantum sys-
tems. This is in general a difficult question, as we
have no guarantee that using low-dimensional systems
is optimal. Nevertheless, we can obtain upper bounds
on S($) by considering low dimensional systems. We
performed numerical optimization for quantum strate-
gies involving systems up to dimension d = 4 (see [25]
Sec. VI). Results are presented in Fig. 2. Interestingly,
the use of quantum systems allows for a clear reduc-
tion of the entropy (compared to classical messages) for
basically any witness value. Whether the use of higher
dimensional systems could help reduce S($) further is
an interesting open question.

Conclusion.—We have shown that the entropy, a fun-
damental quantity in classical and quantum informa-
tion, can be tested in a DI way. Two complementary
methods tailored for this task were presented. The first,
based on inference networks, can be readily applied
to very general scenarios, but gives usually suboptimal
bounds. The second method gives tight bounds on the
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entropy, allowing to show that quantum communica-
tion provides an advantage over classical, since it re-
quires a lower entropy to reproduce given data. How-
ever, since is based on convex optimization, its direct
application is restricted to simpler scenarios. Nonethe-
less, using this method we have shown how entropy
witnesses can be directly constructed from dimension
witnesses inequalities.

The simplest tests presented here are certainly
amenable to experiments and would provide an inter-
esting new perspective to the recent experimental DI
characterization of the dimension of quantum systems
[17]. Moreover, given the success of the DI approach
for quantum information processing, it would be in-
teresting to investigate potential applications based on
the present work, in particular in the context of the
semi-DI approach [30, 31]. The latter is intermediate be-
tween the fully DI approach and the standard (device-

dependent) one, and thus combines partial DI security
and ease of implementation [32, 33]. Semi-DI protocols
are prepare-and-measure, and their security has been
so far based on the assumption that the mediating sys-
tem is of bounded dimension, e.g. qubits. It would be
interesting to see if security could also be guaranteed
based on the assumption that the system has limited
entropy, which is indeed a strictly weaker assumption
and perhaps more natural in a communication protocol.
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