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Abstract 

 Neurons communicate with each other dynamically. How such communications lead to 

consciousness remains unclear. Here, we present a theoretical model to understand the dynamic 

nature of sensory activity and information integration in a hierarchical network, in which edges 

are stochastically defined by a single parameter, p, representing percolation probability of 

information transmission. We validate the model by comparing the transmitted and original 

signal distributions and show that a basic version of this model can reproduce key spectral 

features clinically observed in electroencephalographic recordings of transitions from conscious 

to unconscious brain activities during general anesthesia. As p decreases, a steep divergence of 

the transmitted signal from the original was observed, along with a loss of signal synchrony and 

a sharp increase in information entropy in a critical manner, resembling the precipitous loss of 

consciousness during anesthesia. The model offers mechanistic insights into the emergence of 

information integration from a stochastic process, laying the foundation to understand the origin 

of cognition. 

 

Keywords: cognition; electroencephalograph (EEG); general anesthesia; loss of consciousness; 
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  Structural and functional neuroimaging studies have mapped the connectivity of 

neuroanatomy and networks at ever-increasing resolution [1-5]. Analyses assigning cognitive 

roles to structural or functional regions demonstrate mechanism based on functionalism and not 

on neurobiological first principles, failing to bridge matter and mind [6]. In most analyses, 

cognition is claimed to arise in a large-scale functional network exhibiting co-activation of brain 

regions during a given task [4]. Although this definition of cognition usefully relates structure to 

function [4], its theoretical framework is circular and offers limited value in understanding basic 

principles governing the emergence of cognition.  

Circumventing this theoretical gap, several studies modeled individual 

electroencephalographic (EEG) features associated with loss of consciousness during general 

anesthesia [7-14]. Dynamic causal modeling was used to describe EEG spectral power under 

anesthesia-induced unconsciousness [15]. Metabolism dynamics was used to account for burst 

suppression [12]. A stochastic model was developed to describe general anesthesia as a 

thermodynamic phase transition [7,8]. A more detailed account of anesthetic effects on ion 

channels was used to parameterize a mean-field theory of electrocortical activities [16]. An 

information integration theory [17] treated consciousness as a unified state in a complex system 

that gains quantifiable information as a whole relative to the parts. An empirical measure was 

recently developed to assess information integration under different conscious states [18]. 

However, few theoretical advances explain multiple EEG features while accounting for 

information flow and integration ab initio without making causal assumptions of the system. A 

systems-level theory is needed to explain sensory processing under deep anesthesia [19]. No 

existing model accounts for EEG features under anesthesia, disruption of information flow, and 

neurobiological function together. 

 Here, we applied neurobiological first principles to information transmission in a neural 

network constructed based on the thalamocortical and corticocortical topology. We used 

percolation theory to calculate information access between nodes. The model reveals coherence 

emergence at a critical threshold by varying only one parameter governing probability with 

which an edge is connected. It generates stereotypical EEG features under general anesthesia 

while reproducing dose response characteristics for loss of consciousness. Linking loss and gain 

of information access to anesthesia induction and emergence, the model provides a fundamental 

theory of information emerging from a stochastic process, suggesting that cognitive features are 

enabled as a phase transition.  
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 We consider a layered hierarchical fractal structure ascending from an input node to 

multiple output nodes. The layered configuration abstracts laminar and divergent organization in 

mammalian thalamocortical structures [20-22] (see Figure S1 in Supplemental Materials [url], 

which includes Refs. [23,24]). We created layers by scale-invariant fractal expansion and 

generated small-world properties among nodes within each layer using the Watts-Strogatz 

algorithm [25]. Scale-invariance and small-world organization of brain networks have been well 

justified [26-31]. Edges are directional (wij ≠ wji) to reflect the counter-stream architecture of the 

human brain [32]. Importantly, we distinguish anterior from posterior nodes by assigning 

different edge weights in the feedforward and feedback directions.  

Let Ai(t) and Pj(t) denote neural activity of node i and preceding input from node j at time 

t, respectively. Ai(t) is the weighted average of activities from all input nodes: 

 

 Ai (t) =
wijPj (t)

j
∑

wij
j
∑

=
wiiPi (t) + wijPj (t)

j≠i
∑

wii + wij
j≠i
∑       [1] 

 

where wij is the weight of a directional edge from nodes j to i, and the input function Pj(t) 

represents the accumulated history of neural activity from preceding m time steps, weighted by 

exponentially decaying memory: 

 Pj (t) =
e−τ Aj (t − τ )

τ =1

m

∑

e−τ

τ =1

m

∑
       [2] 

 

 We used percolation theory [33] to stochastically assign weights wij to edges using a 

sampling function with probability p representing likelihood of activity transmission: 

 wij =

cdf (U[0,1]) i ≠ j

ce
−λ wki

k≠i
∑

i = j

⎧

⎨
⎪⎪

⎩
⎪
⎪

     [3] 
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where cdf is the Gaussian cumulative distribution function centered at 1 – p with a standard 

deviation of 0.05 (Figure S2), U[0,1] is a uniform 0-1 distribution, and c and λ are constants. As 

p is lowered, the probability of activity transmission along individual edges is reduced, 

representing inhibition of information flow under anesthesia. Although different anesthetic 

classes act differently at molecular and cellular levels, with some potentiating inhibitory 

neurotransmission and others inhibiting excitatory neurotransmission, the net effect can be 

abstracted as a global inhibition of arousal [34]. For i ≠ j, the sampling process of wij is 

independently varied by p. For i = j, wii is the memory of the past activity of the same node and 

is influenced by the incoming connection strength. Self-connection dominates when all non-self 

connections diminish (i.e., when wki
k≠i
∑ → 0). Since neuronal transmission, including axonal 

propagation and synaptic events, involves cycles of receptor inactivation, activation, and 

deactivation or desensitization, we account for this dynamic behavior by periodically resampling 

edge weights using the sampling process above. The resampling periodicity is proportional to e–

αp, where α is a constant. 

We first validated the theory against previous experimental EEG studies under general 

anesthesia, using several clinically observed features as evaluation criteria. Four key features are 

hallmarks of global EEG responses: (1) characteristic EEG waveforms, including burst 

suppression under deep anesthesia [35], (2) EEG power shift to lower frequencies with 

increasing anesthetic concentrations [36], (3) synchronization of cortical nodes [37], and (4) shift 

of α and δ power to anterior, termed anteriorization [38]. Our model reproduces all of these 

clinical features simultaneously. Methods are detailed in Supplemental Materials.  

 Typical time-domain signals on a randomly selected output node are depicted in Figure 

1a. Two different fractalizations yielded similar dependence on p.  The waveforms strikingly 

resemble clinical EEG under different anesthesia depths [39]. As p is lowered, the dominant 

output frequency decreases while the amplitude increases as revealed by the spectral density in 

Fourier analyses (Figure 1b). Contrary to the simplistic picture of decreasing information flow 

during diminishing network connectivity, power rises significantly at p = 0.7 in the β (12-30 Hz), 

α (8-12 Hz), θ (4-8 Hz), and δ (< 4 Hz) ranges. When a critical portion of edges is cut (p ≈ 0.5-

0.3), the spectral density rapidly concentrates into δ. At very low p values, network output 

exhibits bursting δ waves (Figure 1c), resembling burst suppression under deep anesthesia. When 

p approaches 0, the output flatlines, corresponding to isoelectric activity of a completely 
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inhibited brain. These results agree with clinical observations of EEG power shift from the γ and 

β bands to the α and δ bands during anesthesia [36].  

 The model reveals that the underlying mechanism of burst suppression is edge 

resampling due to receptor desensitization and reactivation in a dynamic network. A decreasing p 

reduces the probability for signals to percolate to cortex, leading to prolonged quiescence 

periods. However, when edge weights are dynamically refreshed, even at very low p, some 

signals transiently percolate through stochastically connected edges to reach the output layers, 

appearing as short bursts between long suppressions.  

 The model also reveals that frequency shift is an emergent phenomenon, occurring 

precipitously in a specific range of edge probabilities. The rapid power shift to lower frequencies 

matches clinical EEG at a critical anesthetic concentration where consciousness is sharply and 

completely lost. Remarkably, this clinical feature is reproduced in random networks without a 

high graph density, suggesting that loss of consciousness is not localized to a specific set of 

neurons or receptor types but is due to large-scale, distributed action on network connectivity. 

Importantly, this phenomenon is input invariant and intrinsic to the dynamic process of edge 

connectivity. 

 Synchronization of output with input occurs in the same frequency ranges when power 

concentrates to β, α, and δ bands. Figure 2a displays input-posterior output synchronization. An 

identical pattern was observed between input and anterior output. When p is lowered to 0.5-0.7, 

cortical and thalamic nodes are strongly correlated in the β, α, and δ frequencies. As p is further 

lowered to 0.3-0.5, thalamocortical coupling exhibits a narrow band of strong synchronization in 

γ (30-75 Hz) and β (16-30 Hz) bands. The appearance of this strong thalamocortical synchrony at 

p ~ 0.3 indicates information integration, whereby chaotic signals at p < 0.3 become ordered and 

recognizable in the output. The γ activity in a severely inhibited network is similar to near-death 

EEG activity [40]. Corticocortical synchronization was also observed among output nodes. 

Agreeing with clinical observations under deep anesthesia [37,41,42], corticocortical 

synchronization in a heavily cut network occurs predominantly in the δ and θ frequency ranges 

(Figure 2b). 

 EEG anteriorization during anesthesia reflects asymmetric network activity. To 

understand its underlying mechanism, we investigated various conditions that could support 

asymmetric distribution of spectral power when p was reduced. We observed anteriorization only 

when feedback weights were greater than feedforward weights. Figure 3 displays Fourier 



   7

transformations of neural activity in the outer-most layer of a 4-degree-5-layer fractal network. 

Anteriorization is evident in the α and δ frequencies when the feedback:feedforward ratio is 10:1. 

Anteriorization co-occurs with frequency downshift and thalamocortical synchronization, 

signifying a shared mechanism of the same statistical process. Altering ascending projection 

probabilities to anterior or posterior nodes failed to produce anteriorization, suggesting that 

anteriorization results from inhibition of corticocortical rather than thalamocortical 

communications. Literature on comparative density of feedback projections in the visual system 

supports this finding [3,32,43,44]. Although counter-intuitive, the result underscores 

fundamental differences between steady-state and dynamic networks, in which response to 

change dominates output. As edges are incrementally cut, a network with denser (greater weight) 

feedback projections has disproportionally higher probability to lose feedback information flow. 

Our model suggests that shifts of low-frequency power to the network anterior results from 

exaggerated disruption in the feedback direction. This result offers an alternative interpretation 

for the preferential inhibition of feedback connectivity during general anesthesia [45], which 

occurs due to a higher baseline density of feedback connectivity under unanesthetized 

conditions. 

 Our model makes no a priori assumptions about molecular, cellular, or metabolic 

mechanisms of the network, nor does it specify constraints on connections within layers, 

ensuring the system’s universality and scalability. By conceptualizing global arousal as 

stochastic edge percolation among brain centers, our model is necessarily coarse-grained without 

considering drug-specific and receptor-specific properties. Yet, the success of such a simple 

statistical model in producing multiple salient EEG features under anesthesia suggests that it 

simulates information transmission at a fundamental level and provides theoretical confidence in 

its predictive power.  

A prediction of general interest is when and how cognitive features, such as sensory 

access, arise in an artificial network. We use the criticality of a chaos-order state transition as a 

surrogate measure to define the accessibility of information-encoding dynamics of a given node 

at other nodes. We determined conditions under which information is statistically preserved by 

analyzing divergence of the time-domain signal distributions when the output at a randomly 

selected node is used to represent the input. We quantified percolation loss as an increase in bit-

wise information entropy measured by Kullback-Leibler (KL) divergence, or KL(P||Q), where P 

and Q are probability distributions of input and output, respectively [46]. An order parameter is 
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defined as detailed in Supplemental Materials. Figure 4 shows how order emerges sharply as the 

network’s edge probability increases from 0 to 1. Information entropy (Figure 4a) drops 

precipitously at p ≈ 0.3. The dichotomous dependence of KL divergence on p for encoded 

information content is plotted in Figure 4b. A clear phase transition – with more pronounced 

fluctuations – occurs around p ≈ 0.3. To illustrate this transition graphically, we percolated a 

time series encoding the pixel intensities of an 8-bit gray-scale image through the network under 

different p values and examined the threshold at which the integrity of the image was 

“recognizable” in the output layer. We calculated KL(P||Q) – KLc for 256 different intensities (= 

8 bits of information) with systematically varied p values. Each output pixel intensity was 

determined stochastically from 2[KL(P||Q)–KLc] random values between 0 and 256 (i.e., KL(P||Q) – 

KLc bits of information) including the correct pixel intensity in the input image. Figure 4c shows 

a series of images decoded randomly at any node in the output layer at different percolation 

probabilities. A discernible image emerges sharply between p = 0.30 and 0.32. Recall that 

thalamocortical synchronization emerges in the γ and β band at the same p range (Figure 2a). 

 The sharp emergence of order with a precipitous drop in entropy approximates the steep 

dose-response curve for transitions between brain states during general anesthesia. More 

remarkably, no network connection is deterministic because weight re-assignments stochastically 

switch any given edge between open and closed. Moreover, graph density in our network is 

relatively sparse, suggesting that dense connectivity is not required to support high-level 

information features. That the integrity of the input image in Figure 4 is partially maintained and 

recognizable at p ≈ 0.3 suggests a low information emergence threshold. Indeed, the probability 

for information percolating from input to any output node at p ≈ 0.3 is <0.0081 for the shortest 

path, yet inhibition at this level is robustly tolerated. The underlying process for burst 

suppressions, discussed above, likely contributes to the network’s ability to integrate information 

at low p. This implies that information access can occur in simple systems as long as some type 

of pacemaking activity exists to coordinate dynamic recalibration of connection strength among 

network components. In mammalian brains, pacemakers are known to exist [47-49] and their 

neurobiological description is consistent with this notion. 

 Our model is built to provide a global view of rules governing information percolations 

through scalable brain connectivity, without considering many biological details. For example, 

we do not differentiate network inhibition through potentiation of inhibitory neurons or 

inhibition of excitatory neurons. Similarly, regional heterogeneities due to different populations 
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of receptor subtypes are not considered. Although adding more realism will likely provide more 

quantitative power to explain specific experimental observations, these details will not invalidate 

the general conclusions on the global scale, as evidenced by the model’s qualitative robustness in 

reproducing clinical EEG features with only a single parameter. 

This model has important theoretical implications, supporting the notion that 

consciousness may arise from the same basic statistical processes as those governing the 

criticality for self-organization emergence, independent of biological details [50]. Although the 

brain is many orders of magnitude more complex, it is tempting to speculate that transition 

between conscious and unconscious states is also regulated by a single connectivity parameter, 

especially considering the clinical observation that a sharp transition between conscious and 

unconscious states occurs within an extremely narrow anesthetic concentration range, with little 

variation among human subjects or even among different species of vastly different brain scales 

and capacities. 

Experimentalists may test this model by measuring organized synchronous activity in 

brain networks, such as between primary visual cortex and frontal eye fields. A critical anesthetic 

dose might be identified where synchronous firing for visual attention is abruptly disrupted upon 

loss of consciousness. It is also possible to design a double transgenic system [51] with two 

reporters driven by activity-dependent immediate early genes. Comparison of co-localization of 

the reporters should reveal a fixed subset of neurons in conscious learning and relearning but an 

increasingly chaotic, non-overlapping subset of neurons in unconscious learning under varying 

anesthesia depths.  Our model also raises the possibility of statistically improbable brain states, 

in which deeply inhibited neural centers become sufficiently connected through stochastic 

processes to support consciousness markers. Clinically, this may suggest the possibility of 

information incorporation in minimally conscious brains. Recent experiments in rodents have 

demonstrated such possibilities [19].  
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Figure Legends 

Figure 1. Information percolation in neural network. (a) Output activities are plotted for 

various p on a randomly selected node in a 1-to-4 fractalization network. Input amplitude was 

scaled to p = 1. Output reproduces several clinical EEG properties. At p = 0.2, burst suppression 

is observed. (b) Fourier analysis, averaged from 40 replicas on randomly-selected output nodes, 

reveals frequency shift upon network inhibition. Around p = 0.7, frequency shifts from β to α 

range. Power concentrates toward α and δ ranges with decreasing p. (c) Burst suppressions 

become evident at low p.  Corresponding time-domain activities are superimposed onto 

spectrograms depicting frequency components of the bursts. Without losing generality, 50% 

random noises were added to a 115-Hz sinusoidal signal as input.  

 

Figure 2. Thalamocortical and corticocortical coherence. (a) Thalamocortical coherence, 

measured as cross-spectral density averaged from 40 replicas on randomly-selected posterior 

nodes, is plotted as a function of p. Patterns for anterior nodes are similar. Until p ≈ 0.8, no 

coherent activity is dominant at any frequency. With further inhibition, thalamocortical 

coherence appears in the β-range and lowers to the α-range at p ≈ 0.6. Between p ≈ 0.5-0.3, a 

band of γ coherence is visible. (b) Corticocortical coherence between two randomly-selected 

nodes in the output layer appears in the α and δ ranges for p < 0.6. Coherence frequencies further 

decrease with p. To maximize test stringency, simulations were performed using random noise as 

input. 

 

Figure 3. Anteriorization of cortical activity. Fourier analyses of output node activity for the 

indicated edge probabilities. Output nodes are arranged 1 to 256 in groups of 16 from posterior 

to anterior. Higher power in α and δ bands shifts to the anterior (higher number) nodes with 

decreasing p until p = 0.3, when anteriorization effects dissipate. 

 

Figure 4. Emergence of correlative signal cohesion. (a) Output information entropy, measured 

by the KL divergence (KL(P||Q) – KLc) as an order parameter, is plotted as a function of p. Each 

value represents bits lost in the output from 8 bits of maximum information. A phase transition is 

revealed at p ≈ 0.3. (b) KL divergence plotted as a function of pixel intensity for p = 0 (pink), 

0.15 (red), 0.20 (orange), 0.25 (yellow), 0.30 (black), 0.35 (green), 0.40 (cyan), 0.45 (blue), and 

1 (dark blue). Similar to (a), a clear dichotomy in information entropy occurs around p of 0.3. 
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Information content is lost more rapidly from high-intensity signals. (c) Graphic illustration of 

transitions revealed in (a) and (b): Reconstructions of an 8-bit gray-scale image at p = 0.00, 0.30, 

0.32, 0.34, 0.38, and 1.00, respectively. The original image features emerge sharply, becoming 

recognizable between p of 0.32-0.34.
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