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Density functional plus dynamical mean field calculations are used to show that in transition
metal oxides, rotational and tilting (GdFeO3-type) distortions of the ideal cubic perovskite struc-
ture produce a multiplicity of low energy optical transitions which affect the conductivity down
to frequencies of the order of one or two millivolts (terahertz regime), mimicking non-Fermi-liquid
effects even in systems with a strictly Fermi liquid self-energy. For CaRuO3, a material whose mea-
sured electromagnetic response in the terahertz frequency regime has been interpreted as evidence
for non-Fermi-liquid physics, the combination of these band structure effects and a renormalized
Fermi liquid self-energy accounts for the low frequency optical response which had previously been
regarded as a signature of exotic physics. Signatures of deviations from Fermi liquid behavior at
higher frequencies (∼ 100 meV) are discussed.

Fermi liquid theory provides the canonical picture of
metals; observation of deviations from Fermi liquid be-
havior is thus of intense interest as a potential indication
of novel physics. The defining feature of a Fermi liquid
is the existence of electron-like quasiparticles whose low
temperature and frequency properties are characterized
by an effective mass that is independent of frequency
and a scattering rate that is parametrically smaller than
frequency or temperature (typically varying as ω2 or
T 2). The perovskite ruthenate CaRuO3 has been the
subject of considerable attention in this context because
its frequency dependent conductivity has been reported
[1, 2] to vary as a power of frequency with exponent less
than unity. The anomalous dependence extends to very
low frequencies of the order of 1 THz (∼ 4 meV) [2],
and has been interpreted as indicating a breakdown of
Fermi liquid physics in this material. Similar interpre-
tations have been given of optical data in SrRuO3 [3].
On the other hand, recent dc transport measurements
in CaRuO3 found quantum oscillations and a quadratic
temperature dependence of the resistivity [4] below 1.5 K
– characteristic of a Fermi liquid. The link between the
frequency-dependent and dc transport measurements has
not been established and a model accounting for the op-
tical conductivity is not known.

In this paper we present density functional (DFT) plus
dynamical mean field (DMFT) calculations which indi-
cate that band structure effects associated with octahe-
dral rotations of the ideal perovskite crystal structure
produce optically active interband transitions that con-
tribute to the conductivity on scales as low as 1 THz
(∼ meV) and can mimic non-Fermi-liquid physics. As an
application we show that the observed THz conductiv-

ity of CaRuO3 is consistent with Fermi-liquid-like quasi-
particles and quantify the departures from Fermi liquid
physics that occur at higher scales.

The standard arguments relating optical conductivity
σ(Ω) and electron self-energy Σ(ω) may conveniently be
framed in terms of an approximation due to Allen [5–7]:

σ(Ω) ∝ i

Ω

∫
dω

f(ω)− f(ω + Ω)

Ω− Σ(Ω + ω) + Σ?(ω)
. (1)

Here f is the Fermi function and the ? denotes complex
conjugation. Eq. (1) is expected to be reasonable when
interband transitions are neglected.

In a simple Drude metal, Σ = −i/(2τ) with 2τ the time
between scatterings of electrons off of impurities. Use of
this self-energy in Eq. (1) yields the familiar Drude con-
ductivity σ(Ω) ∝ τ/(1 − iΩτ). Use of the Fermi liquid
form Σ(ω) ∝ (1−Z−1)ω−iΩ−10

(
ω2 + π2T 2

)
yields a con-

ductivity with a characteristic scaling form [8], see also
Refs. [9, 10], that we will refer to as the single-band Fermi
liquid (SBFL) conductivity. If the self-energy takes the
non-Fermi-liquid form Σ(ω) ∼ ωx with x < 1 one has
|Σ(ω)| > |ω| at low frequency, so that the term propor-
tional to Ω in the denominator of the argument of the
integral in Eq. (1) may be neglected. A scaling analysis
of Eq. (1) then shows that for small Ω, σ ∼ Ω−x, with
the divergence cut off by temperature.

We compare expectations based on Eq. (1) to realis-
tic calculations of the frequency dependent conductiv-
ity of CaRuO3. This material crystallizes in a GdFeO3-
distorted version of the ideal cubic perovskite structure.
In the latter, there are three near-Fermi-surface bands
derived from the three t2g states. The GdFeO3-distorted
structure has four Ru ions in the unit cell, leading to
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12 t2g-derived near-Fermi-surface bands. The t2g-derived
bands are the eigenvalues of a Hamiltonian matrix H0(k)
with k a wavevector in the first Brillouin zone. H0(k)
is obtained by using maximally localized Wannier func-
tion (MLWF) [11, 12] techniques to project the Kohn-
Sham Hamiltonian found from a spin-unpolarized DFT
band calculation onto the near-Fermi-surface states. The
effects of electron-electron interactions are encoded in
the self-energy Σ(k, ω), also a matrix, which we com-
pute by applying single-site DMFT to the H0(k) corre-
sponding to the experimental structure of CaRuO3 with
standard Slater-Kanamori interactions parametrized by
U = 2.3 eV and J = 0.4 eV (see Supplementary Mate-
rial, which includes Refs. 11–25, for details of DFT and
DMFT calculations). Electron propagation in the t2g-
derived bands is thus described by the N × N matrix
Green function (N = 3 for the cubic structure and 12 for
the experimental one)

G(k, ω) = [ω + µ−H0(k)− Σ(ω)]
−1
. (2)

For the situations we consider there are no vertex cor-
rections to the current operator in the single-site dynam-
ical mean field approximation, essentially because no on-
site optical transitions are allowed (see Supplementary
Material for a more detailed discussion and also Ref. 26
for the single-band case) so the conductivity becomes

σ(Ω) =

∫
dω

π

f(ω)− f(ω + Ω)

Ω
(3)

×Tr [JkImG(k, ω + Ω)JkImG(k, ω)] .

The matrix current operator Jk is derived in a standard
way fromH0(k) (note that in systems with more than one
atom per unit cell, care must be taken to use a basis in
which each atom acquires the Peierls phase appropriate
to its physical position within the unit cell [27, 28]). The
trace is over momentum and band indices. In our calcu-
lations, the four-dimensional integral (in frequency and
momentum space) is performed using Gaussian quadra-
ture with 60 points in each direction. The Allen formula
[Eq. (1)] may be derived from Eq. (3) if the matrices are
diagonal (no interband transitions) and when the trans-
port function (i.e. the density of states weighted by cur-
rent matrix elements) depends weakly on energy.

The main panel of Fig. 1 presents the normalized con-
ductivity calculated using Eq. (3) with H0(k), Jk and
Σ appropriate to the experimental structure of CaRuO3.
The conductivity in the mid-infrared regime (5 meV .
Ω . 250 meV) appears to vary as a power law∼ ω−x with
x in the range 0.4−0.6, similar to the power law reported
experimentally [1]. The lower inset compares the cal-
culated conductivity to recent measurements [4], which
come from samples with significantly lower impurity scat-
tering than samples studied earlier [2]. The quantitative
correspondence between calculation and data is good.

Also shown in Fig. 1 are the conductivities obtained
from Eq. (3) using the H0(k) and Jk corresponding to
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FIG. 1. (Color online) Main panel: optical conductivity (nor-
malized to its zero frequency value). Heavy solid line (blue on-
line): conductivity computed from DFT+DMFT at T = 30 K
for the orthorhombic experimental structure. The dashed
straight line is a guide to the eye indicating the power-law
behaviour ∼ ω−0.5, corresponding to the experimentally re-
ported mid-IR frequency dependence [1]. Also displayed are
the conductivities computed for hypothetical cubic structure
(intermediate weight line, red online) and from the Allen for-
mula (light line, black online), using the same DMFT self-
energy as used in the experimental structure calculation. Fi-
nally, the dotted line presents the ‘SBFL’ result obtained by
using a Fermi liquid self-energy in the Allen formula. Inset
(a): optical conductivity calculated using DMFT self-energy
for experimental structure and cubic structure compared to a
calculation (dashed lines) for the experimental structure but
with a Fermi-liquid self-energy [Eq. (4)]. Inset (b): experi-
mental data of Ref. 4 in the THz range along with the DMFT
calculation for the realistic structure.

the ideal cubic structure (while keeping the same self-
energies as for the real structure) and by using the Allen
formula [Eq. (1)] again for the same self-energies. (The
Allen formula results are obtained as an equally weighted
sum over three terms, one for each diagonal entry in the
self-energy matrix). In the THz and sub-THz regime
(ω ∼ 1−10 meV) the cubic/Allen results exhibit a much
more rapid rolloff from the dc plateau than does the ex-
perimental structure conductivity, while in the mid-IR
(ω ∼ 100 meV) regime the cubic/Allen results exhibit an
approximate plateau if the DMFT self-energy is used.

As the self-energies used in the cubic and orthorhombic
calculations are exactly the same, the difference between
the results is not a self-energy effect and does not corre-
spond to non-Fermi-liquid physics. To probe the effect
of the self-energy, we also display in the main panel the
SBFL result (with parameters Z,Ω0 determined from a
fit to the DMFT self-energy in Fig. 3), and in the inset
(a) the conductivity obtained when using a Fermi-liquid
self-energy and the realistic orthorhombic structure. We
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FIG. 2. Band structure computed for (a): the ideal cu-
bic perovskite form of CaRuO3 plotted along high symmetry
directions in the cubic perovskite Brillouin zone. (b): the
ideal cubic structure folded back into the Brillouin zone of the
experimental orthorhombic structure. (c): the experimental
orthorhombic structure, along high symmetry directions of
the orthorhombic Brillouin zone. All three panels show the
frontier t2g-antibonding bands produced by MLWF fitting of
the DFT (GGA) band structure. Inset: Optical transitions
across minigaps which are forbidden in the cubic structure
are activated in the distorted structure.

see that the choice of self-energy hardly influences the
low frequency result; it is only at frequencies higher than
∼ 50 meV that the choice of self-energy significantly in-
fluences the calculation.

The key approximation of both the Allen and SBFL
formula is the neglect of interband transitions. The dif-
ference between these approximations and the calculation
for the experimental structure thus arises from optically
active interband transitions, which are seen to affect the
conductivity down to scales as low as 1 THz. To explicate
the origin of these transitions we present in Fig. 2 our cal-
culated band structures. The left panel shows the near-
Fermi-surface bands found for the ideal cubic structure.
Direct interband transitions between the three bands are
possible in principle; however the different orbital sym-
metry of the different bands means that the matrix ele-
ments are small, especially in the lower frequency regime,
so that the cubic and Allen results are similar. At higher
energies, interband transitions have some effect in the
cubic structure as well.

The middle panel shows the bands of the cubic struc-
ture, folded into the Brillouin zone of the experimen-
tal structure. The backfolding creates the possibility
of many low-lying interband transitions, but in the cu-
bic structure these transitions are not optically active
as they do not correspond to zero-momentum transfer.
The right panel shows the band structure obtained for
the experimental structure. The octahedral rotations re-
duce the overlap between states on different sites, caus-
ing a band narrowing from 3.6 eV to 2.6 eV visible for
example in the energies near the Γ point and flatten-
ing the dispersion in the near-Fermi-surface region. The
zero frequency conductivity of the orthorhombic case is
thus smaller (by a factor of ∼ 3) than the cubic result
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FIG. 3. (Color online) (a): Real part of the self-energy for one
of the three orbitals (solid line). Dashed-dotted line: linear
low-frequency fit to the real part of Eq. (4) with slope 1 −
Z−1 ≡ dΣ/dω = −5.3. (b): Imaginary part of self-energy of
the same orbital (solid line). Dashed-dotted line: low-energy
Fermi liquid fit to the imaginary part of Eq. (4) with Ω0 '
14 meV and temperature T = 0.0025 meV ≈ 30 K. Vertical
lines: boundary of the Fermi liquid region (ω = 0.09 eV).

(see inset Fig. 1). The rotations also allow matrix ele-
ments between nearby states, opening additional mini-
gaps where the cubic bands cross, further flattening the
bands at the Fermi level and, crucially, activating optical
matrix elements between the backfolded bands. Start-
ing at ω ∼ 1 meV, these become important, changing
the functional form of the conductivity. At high frequen-
cies the experimental and cubic structure conductivities
become very similar, as the small gaps are unimportant.

To study the nature of the non-Fermi-liquid effects in
the conductivity of CaRuO3 we present in Fig. 3 a plot
of the real and imaginary parts of the self-energy calcu-
lated for one of the three t2g orbitals (the self-energies
associated with the other two are similar). Also shown is
a fit of the self-energy to the functional form

ΣFL(ω, T ) =
(
1− Z−1

)
ω − iΩ−10

[
ω2 + b (πT )

2
]
. (4)

Here Z is a dimensionless constant giving the mass renor-
malization m?/m ≡ Z−1, T is the temperature and
the characteristic energy Ω0 sets the scale of the scat-
tering rate. The parameter b = 1 (Fermi liquid) for
the plotted orbital but about 2 − 3 for the other two
perhaps because the coherence temperature is not quite
reached. From Fig. 3 we see that at very low frequencies
|ω| . 20 meV the self-energy approximately takes the
Fermi liquid form, but for larger frequencies ω & 40 meV
pronounced (& 50%) deviations occur. On the positive
frequency (electron addition) side the imaginary part of
the self-energy saturates for ω & 0.1 eV and the real part
loses most of its frequency dependence. On the negative
frequency (electron removal) side the imaginary part of
the self-energy increases (although not as rapidly as the
Fermi liquid ω2) and exhibits a large peak (not shown) at
ω ∼ −1 eV. The low frequency at which deviations from
Fermi liquid behavior occur is characteristic of multior-
bital systems with sizeable Hund’s coupling [29].
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FIG. 4. (Color online) Optical mass (a) and scattering rate
(b) obtained via Eq. (5) for different cases considered in this
paper and compared to quasiparticle mass (∼ 6.7 as calcu-
lated from the slope of ImΣ(iωn)) and the imaginary part of
the single particle self-energy (dashed curve - green online).
Dotted curves (magenta online) indicate ω±0.5 behavior.

At very low frequency (. 7.5 meV), ω < πT the scat-
tering rate is in effect constant so the cubic and Allen-
formula conductivities in Fig. 1 are indeed well described
by a Drude form with frequency independent scattering
rate ΓDrude = 2Z(πT )2/Ω0 ≈ 1.4 meV. However, in the
orthorhombic structure interband transitions cause the
conductivity to decay much less rapidly than expected
from the Drude formula at frequencies & 1 meV.

Suppose now that the self-energy was well described
by the Fermi liquid form even at frequencies higher than
∼ 20 meV. Inspection of the upper inset of Fig. 1 shows
that for Ω & 100 meV the corresponding conductiv-
ity becomes much smaller than either the cubic or the
experimental system conductivity. (One sees this from
the behavior of the SBFL curve in the main panel of
Fig. 1, but it can also be derived directly (see Supple-
mentary Material) by inserting Eq. (4) into Eq. (1), set-
ting temperature T = 0 and scaling the internal inte-
gration variable by the external frequency Ω to yield

σFL(Ω) ∝ Z
∫ 0

−1 dx
(
−iΩ + ZΩ−10 Ω2(1 + 2x+ 2x2)

)−1
.

The real part of this expression has an approximately
Lorentzian Drude-like decay with decay constant Ω0/Z ≈
80 meV, which describes well the high-frequency behavior
of the Fermi liquid results.) The slower decay of the ac-
tual conductivity is a signature of deviations from Fermi-
liquid physics. It results in particular from the satura-
tion of the scattering rate and strong deviation of ReΣ(ω)
[20] from the low frequency linear behavior apparent on
Fig. 3. In this non-Fermi liquid higher-frequency regime,
the similarity of the conductivities for the cubic and ex-
perimental structure conductivities shows that here band
structure effects are of less importance, implying that in-
formation about the self-energy may be extracted from
the conductivity.

Formally inverting Eq. (1) or Eq. (3) to obtain self-
energies from measured conductivities is an ill-posed and
essentially not solvable inversion problem. However the

widely used ‘memory function’ method [30] provides con-
siderable insight. The typical procedure is to express the
complex conductivity σ̃ in terms of an optical mass en-
hancement λopt and scattering rate Γopt defined as

σ̃ =
K

−iω (1 + λopt(ω)) + Γopt(ω)
. (5)

The objects λopt and Γopt are often interpreted as mass
enhancement and scattering rate respectively and as-
sumed to provide information about the electron self-
energy. Their frequency dependence is determined by
the frequency dependence of the complex conductivity
while the overall magnitude is determined by the con-
stant K = 2/π

∫∞
0

Reσ̃(ω)dω. In the two panels of Fig. 4
we present the λopt and Γopt determined from our cal-
culations, using the directly computed sum rule values
Kcubic = 0.165 eV and Kortho = 0.153 eV (computed for
the orthorhombic b direction).

For the cubic and Allen formula cases, where inter-
band transitions are not important, the scattering rate
found from the memory function is in reasonable agree-
ment with a particle-hole average of imaginary part of
the self-energy. The scattering rate magnitude is cor-
rectly estimated and the low frequency ω2 behavior is
clear. The low frequency limit of the mass corresponds
precisely to the quasiparticle mass enhancement and the
decrease of mass at higher frequency reflects the flatten-
ing of the ReΣ curve [9].

For calculations performed with the experimental
structure the situation is different: at low frequencies the
inferred scattering rate is too large by a factor & 2−4 and
has the wrong concavity. In fact the inferred scattering
rate is roughly consistent with an ω

1
2 behavior and simi-

larly over a limited low frequency range the optical mass
can be fit as ω−

1
2 . This suggests that caution is war-

ranted in performing a memory function analysis of the
low frequency data on GdFeO3-distorted materials. How-
ever the reasonable correspondence at higher frequencies
(ω & 100 meV) between the optical scattering rate and
the imaginary part of the self-energy (averaged over posi-
tive and negative frequencies) again confirms that in this
range the conductivity does give a reasonable estimate of
the magnitude and the saturation frequency of the self-
energy, and in this sense reveals non-Fermi-liquid behav-
ior of the Hund’s metal kind.

In summary, using CaRuO3 as an example we have
shown that real materials effects, in particular a multi-
plicity of optically allowed low-lying transitions arising
from band folding due to rotational and tilt distortions,
can produce a low frequency conductivity of the form
previously associated with non-Fermi-liquid physics. A
direct diagnosis of universal Fermi-liquid behaviour from
the optical conductivity, along the lines of Ref. 8, only
applies when such effects are not important. Our re-
sults call for a reexamination of other reports of unusual
optical response, for instance in SrRuO3, which has a
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ferromagnetic ground state and a smaller orthorhombic
distortion, and for which ARPES spectra consistent with
Fermi-liquid behavior are observed [31]. It is also impor-
tant to examine if interband transitions complicate the
analysis [32–36] of the ratio of the T 2 and ω2 terms in
the optical scattering rate, which has been argued to be
inconsistent with Fermi liquid theory.

H.T.D. acknowledges support from the Deutsche
Forschungsgemeinschaft (DFG) within projects FOR
1807 and RTG 1995, as well as the allocation of comput-
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