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We demonstrate coherent driving of a single electron spin using second harmonic excitation in a
Si/SiGe quantum dot. Our estimates suggest that the anharmonic dot confining potential combined
with a gradient in the transverse magnetic field dominates the second harmonic response. As
expected, the Rabi frequency depends quadratically on the driving amplitude and the periodicity
with respect to the phase of the drive is twice that of the fundamental harmonic. The maximum
Rabi frequency observed for the second harmonic is just a factor of two lower than that achieved
for the first harmonic when driving at the same power. Combined with the lower demands on
microwave circuitry when operating at half the qubit frequency, these observations indicate that
second harmonic driving can be a useful technique for future quantum computation architectures.

PACS numbers: 73.21.La, 71.70.Ej, 72.25.Rb, 75.70.Tj

Controlled two-level quantum systems are essential el-
ements for quantum information processing. A natural
and archetypical controlled two-level system is the elec-
tron spin doublet in the presence of an external static
magnetic field [1, 2]. The common method for driving
transitions between the two spin states is magnetic res-
onance, whereby an a.c. magnetic field (Ba.c.) is applied
transverse to the static magnetic field (Bext), with a fre-
quency, fMW , matching the spin Larmor precession fre-
quency fL = gµBBtot/h (h is Planck’s constant, µB is
the Bohr magneton and Btot the total magnetic field act-
ing on the spin). Coherent rotations of the spin, known
as Rabi oscillations, can be observed when driving over-
comes decoherence.

Both spin transitions and Rabi oscillations can be
driven not just at the fundamental harmonic but also at
higher harmonics; i.e., where the frequency of the trans-
verse a.c. field is an integer fraction of the Larmor fre-
quency, fMW = fL/n, with n an integer. Second or
higher harmonic generation involves non-linear phenom-
ena. Such processes are well known and explored in quan-
tum optics using non-linear crystals [3] and their selectiv-
ity for specific transitions is exploited in spectroscopy and
microscopy [4–8]. Two-photon coherent transitions have
been extensively explored also for biexcitons in (In,Ga)As
quantum dots [9] and in superconducting qubit systems
[10–13]. In cavity QED systems, a two-photon process
has the advantage that it allows the direct transition from
the ground state to the second excited state, which is for-
bidden in the dipole transition by the selection rules [14].

For electron spin qubits, it has been predicted that the
non-linear dependence of the g-tensor on applied electric
fields should allow electric-dipole spin resonance (EDSR)

at subharmonics of the Larmor frequency for hydrogenic
donors in a semiconductor [15, 16]. For electrically driven
spin qubits confined in a (double) quantum dot, higher-
harmonic driving has been proposed that takes advan-
tage of an anharmonic dot confining potential [17–21] or
a spatially inhomogeneous magnetic field [22]. In order
to use higher harmonic generation for coherent control
of a system, the corresponding driving rate must exceed
the decoherence rate. This requires a non-linearity that
is sufficiently strong. Although weak non-linearities are
easily obtained and have allowed higher harmonics to be
used in continuous wave (CW) spectroscopy for quan-
tum dots hosted in GaAs, InAs, InSb and carbon nan-
otubes [23–28], coherent spin manipulation using higher
harmonics has not been demonstrated previously.

In this letter we present experimental evidence of co-
herent second harmonic manipulation of an electron spin
confined in a single quantum dot (QD) hosted in Si/SiGe
quantum well. We show that this second-harmonic driv-
ing can be used for universal spin control, and we use
it to measure the free-induction and Hahn-echo decay of
the electron spin. Furthermore, we study how the sec-
ond harmonic response varies with the microwave am-
plitude and phase, and comment on the nature of the
non-linearity that mediates the second harmonic driving
process in this system.

The quantum dot is electrostatically induced in an un-
doped Si/SiGe quantum well structure, through a combi-
nation of accumulation and depletion gates (see Sec. I of
[30] for full details). The sample and the settings are the
same as those used in Ref. [29]. A cobalt micromagnet
next to the QD creates a local magnetic field gradient,
enabling spin transitions to be driven by electric fields
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FIG. 1. (a) Measured resonance frequencies as a function of
externally applied magnetic field Bext. The long microwave
burst time tp =700 µs ≫ T ∗

2 means that the applied excitation
is effectively continuous wave (CW). The microwave source
output power was P = −33 dBm to −10 dBm (−20 dBm to
−5 dBm) for the case of fundamental (second) harmonic ex-
citation, decreasing for lower microwave frequency in order to
avoid power broadening. The red and green lines represent fits
with the relation hf = gµB

√

(Bext −B||)2 +B2
⊥ respectively

to the resonance data labeled (2) and (3) (we excluded points
with Bext < 700 mT from the fit because the micromagnet
apparently begins to demagnetize there) [29]. (b) Schematic
of the energy levels involved in the excitation process, as a
function of the total magnetic field at the electron location.
The dashed arrows correspond to the four transitions in panel
(a), using the same color code. (c) Schematic of an anhar-
monic confinement potential, leading to higher harmonics in
the electron oscillatory motion in response to a sinusoidally
varying excitation. (d) Measured spin-up probability, P↑, as
a function of applied microwave frequency, fMW , for Bext=
560.783 mT (P = −30 dBm for the fundamental response,
P = −12 dBm for the second harmonics), averaged over 150
repetitions per point times 80 repeated frequency sweeps (160
mins in total). The frequency axis (in red on top) has been
stretched by a factor of two for the second harmonic spin re-
sponse (red datapoints). From the linewidths, we extract a

lower bound for the dephasing time T
∗(1)
2 = 760 ± 100 ns,

T
∗(2)
2 = 810 ± 50 ns, T

∗(3)
2 = 750 ± 40 ns and T

∗(4)
2 = 910 ±

80 ns. The Gaussian fits through the four peaks use the same
color code as in panels (a) and (b).

[29, 31].

All measurements shown here are performed using
single-shot readout via a QD charge sensor [32]. They
make use of four-stage gate voltage pulses implement-
ing (1) initialization to spin-down, (2) spin manipu-
lation through all-electrical microwave excitation, (3)
single-shot spin readout, and (4) a compensation/empty
stage [29]. The results of many single-shot cycles are used
to determine the spin-up probability, P↑, at the end of
the manipulation stage.

First we apply long, low-power microwave excitation
to perform quasi-CW spectroscopy. Fig. 1(a) shows four

observed spin resonance frequencies, f
(1)
0 through f

(4)
0 , as

a function of the external magnetic field. The resonances
labeled (1) and (2) represent the response at the fun-
damental frequency. As in [29], these two closely spaced
resonances correspond to the electron occupying either of
the two lowest valley states, both of which are thermally
populated here. The other two resonances occur at ex-

actly half the frequency of the first two, f
(1)
0 = 2f

(3)
0 ,

f
(2)
0 = 2f

(4)
0 , and represent the second harmonic re-

sponse.
The effective g-factors extracted from the slopes for the

second harmonic response are half those for the first har-
monic response [see Fig. 1(a) inset]. The relevant energy
levels and transitions as a function of the total magnetic
field, Btot, are visualized in Fig. 1(b), where the color
scheme used for the resonances is the same as in Fig. 1(a).
We see two sets of Zeeman split doublets, separated by
the splitting between the two lowest-energy valleys, Ev.
The transition between the Zeeman sublevels within each
doublet can be driven by absorbing a single photon or two
photons, as indicated by the single and double arrows.
To drive a transition using the second harmonic, a non-

linearity is required. In principle, several mechanisms
can introduce such a non-linearity in this system (see
Sec. II of [30]). First, as schematically shown in Fig. 1(c),
if the confining potential is anharmonic, an oscillating
electric field of amplitude Ea.c. and angular frequency
ω = 2πfMW induces effective displacements of the elec-
tron wavefunction with spectral components at angular
frequencies nω, with n an integer. In analogy with non-
linear optical elements, we can look at this process as
generated by an effective non-linear susceptibility of the
electron bounded to the anharmonic QD confinement po-
tential.
The gradient in the transverse magnetic field in the

dot region (B⊥ in green) converts the electron motion
into an oscillating transverse magnetic field of the form

Ba.c.
⊥ (t) = Bω cos(ωt) +B2ω cos(2ωt) + . . . (1)

that can drive the electron spin for ~ω = Ez , 2~ω = Ez

and so forth [17]. A possible source of anharmonicity
arises from the nonlinear dependence of the dipole mo-
ment between the valley (or valley-orbit) ground (υ−)
and excited states (υ+) [33], as a function of Ea.c..
A second possible source of nonlinearity is a variation

of the transverse field gradient, dB⊥

dx,dy
, with position [see

Fig. 1(c)]. Even if the confining potential were harmonic,
this would still lead to an effective transverse magnetic
field containing higher harmonics, of the same form as
Eq.1.
A third possibility is that not only the transverse mag-

netic field but also the longitudinal magnetic field varies
with position. This leads to an a.c. magnetic field which
is not strictly perpendicular to the static field, which
is in itself sufficient to allow second harmonic driving
[21, 34, 35], even when the confining potential is har-
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FIG. 2. Rabi oscillations. (a) Measured spin-up probability,
P↑, as a function of microwave burst time (Bext = 560.783
mT, fMW = 6.4455 GHz) at four different microwave pow-
ers, corresponding to a rms voltage at the source of 998.8
mV, 1257.4 mV, 1410.9 mV, 1583.0 mV. (b) Rabi frequencies

recorded at the fundamental harmonic, f
(1)
0 (blue triangles,

adapted from [29]), and at the second harmonic, f
(3)
0 (green

squares), as a function of the microwave amplitude emitted
from the source (top axis shows the corresponding power).
For the second harmonic, the amplitude shown corresponds
to a 5 dB higher power than the actual output power, to com-
pensate for the 5 dB lower attenuation of the transmission line
at 6 GHz versus 12 GHz (estimated by measuring the coax
transmission at room temperature). The green solid (dashed
black) line is a fit of the second harmonic data with the rela-
tion log(fR) ∝ 2 log(Ea.c.) [log(fR) ∝ log(Ea.c.)]. The large
error bars in the FFT of the data in Fig. 2(a) arise because we
perform the FFT on only a few oscillations. Bext= 560.783
mT.

monic and the field gradients are constant over the entire
range of the electron motion.

However, simple estimates indicate that the second
and third mechanisms are not sufficiently strong in the
present sample to allow the coherent spin manipulation
we report below (see Sec. II of [30]). We propose that the
first mechanism is dominant in this sample, supported by
our observation that the strength of the second harmonic
response is sensitive to the gate voltages defining the dot.

In Fig. 1(d) we zoom in on the four CW spin res-
onance peaks, recorded at low enough power to avoid
power broadening (see Sec. I of [30]). Fitting those res-
onances with Gaussians, we extract the dephasing times

T
∗,(1,2)
2 =

√
2~

πδf
(1,2)
FWHM

, T
∗,(3,4)
2 =

√
2~

2πδf
(3,4)
FWHM

, giving val-

ues in the range of 750 to 910ns for all four resonances
[see caption of Fig. 1(d)]. This directly shows that the
linewidth (FWHM) extracted for the two-photon pro-
cess is half that for the one-photon process, as expected
[15, 22, 35].

From the relative peak heights in Fig. 1(d), we can
estimate the ratio of the Rabi frequencies between the
two peaks in each pair (see Sec. I of [30]). In [29], we
found that the relative thermal populations of the two
valleys (ǫ(4)/ǫ(3)) were about 0.3±0.1 to 0.7±0.1. Given
this, the ratio between the Rabi frequencies, f1, extracted

from the peak heights is rR(2ph) = f
(4)
1 /f

(3)
1 = 0.9± 0.2
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FIG. 3. Phase control of oscillations. (a) Probability P↑ mea-
sured after applying two π/2 rotations via second harmonic
excitation, as a function of the relative phase between the
two microwave bursts, ∆φ. The two rotations are separated
by τ = 100 ns (black) and τ = 2 µs (red). (P = 16.0 dBm,

Bext = 560.783 mT, fMW = f
(3)
0 = 6.44289 GHz). (b) Sim-

ilar to panel (a), but now driving the fundamental harmonic
for τ = 20 ns (black) and τ = 2 µs (red). (P = 12.0 dBm,

Bext = 560.783 mT, fMW = f
(2)
0 = 12.88577 GHz). Inset:

Microwave pulse scheme used for this measurement. (c) Mea-
sured spin-up probability, P↑ (1000 repetitions for each point),
as a function of fMW and the relative phase ∆φ between two
π/2 microwave bursts (130 ns, P = 16.0 dBm) for second har-
monic excitation, with τ = 50 ns. The measurement extends
over more than 15 hours.

for the second harmonics. This is different from the
ratio observed in [29] for the fundamental harmonic,

rR(1ph) = f
(2)
1 /f

(1)
1 = 1.70± 0.05 [36].

Such a difference is to be expected. The ratio rR(2ph)
is affected by how the degree of anharmonicity in the
confining potential differs between the two valleys. In
contrast, rR(1ph) depends on how the electrical suscep-
tibility differs between the two valleys [37]. In addition,
since the valleys have different charge distributions [33],
the microwave electric field couples differently to the two
valley states, and this difference can be frequency depen-
dent [38, 39]. Because the second harmonic Rabi oscilla-
tions are driven at half the frequency of the Rabi oscil-
lations driven at the fundamental, this frequency depen-
dence also contributes to a difference between rR(1ph)
and rR(2ph). We note that the difference in Rabi fre-
quency ratio between the 1-photon and 2-photon case
demonstrates that the second harmonic response is not
just the result of a classical up-conversion of the mi-
crowave frequency taking place before the microwave ra-
diation impinges on the dot, but takes place at the dot
itself.

The second harmonic response also permits coherent
driving, for which a characteristic power dependence is
expected [22, 35, 40]. Fig. 2(a) shows Rabi oscillations,
where the microwave burst time is varied keeping fMW =



4

f
(3)
0 for different microwave powers. We note that the
contribution to the measured spin-up oscillations coming
from the other resonance, (4), is negligible because the
respective spin Larmor frequencies are off-resonance by

2 MHz, f
(3)
1 /f

(4)
1 ≈ 1 and its population is ∼ three times

smaller.

To analyze the dependence of the Rabi frequency on
microwave power, we perform a FFT of various sets of
Rabi oscillations similar to those in Fig. 2(a). Fig. 2(b)
shows the Rabi frequency thus obtained versus mi-
crowave power for driving both at the second harmonic
(green) and at the fundamental (blue), taken for identical
dot settings [29]. We see that for driving at the frequency
of the second harmonic, the Rabi frequency is quadratic
in the applied electric field amplitude (linear in power), as
expected from theory [22, 35, 40]. When driving at the
fundamental resonance, the Rabi frequency is linear in
the driving amplitude, as usual. It is worth noting that
at the highest power used in this experiment the Rabi
frequency obtained from driving the fundamental valley-
orbit ground state spin resonance is just a factor of two
higher than the one from driving at the second harmonic.
This ratio indicates that the use of second harmonic driv-
ing is quite efficient in our device. This result is consis-
tent with Ref. [22], which shows that Rabi frequencies at
subharmonic resonances can be comparable to the Rabi
frequency at the fundamental resonance, and also with
the theory and experiments in Refs. [20] and [26], which
report resonant response at a second harmonic that can
exceed that at the fundamental.

A further peculiarity in coherent driving using second
harmonics is seen when we vary the phase of two con-
secutive microwave bursts. Fig. 3(a) shows the spin-up
probability following two π/2 microwave bursts with rel-

ative phase ∆φ, resonant with f
(3)
0 and separated by

a fixed waiting time τ . For short τ , the signal oscil-
lates sinusoidally in ∆φ with a period that is half that
for the single-photon case [compare the black traces in
Figs. 3(a,b)].

Therefore, in order to rotate the electron spin around
an axis in the rotating frame rotated by 90 degrees with
respect to a prior spin rotation axis (e.g. a Y rotation
following an X rotation in the rotating frame), we need to
set ∆φ to 45 degrees, instead of 90 degrees, when driving
via the second harmonic. Of course, for τ ≫ T ∗

2 , the con-
trast has vanished, indicating that all phase information
is lost during the waiting time [Fig. 3(a,b) red traces].
Fig. 3(c) shows two-pulse measurements as in Fig. 3(a)
as a function of frequency detuning and phase difference,
where we can appreciate the extraordinary stability of
the undoped device.

To probe further the coherence properties of the spin,
we perform a free induction (Ramsey) decay measure-
ment, see Fig. 4(a), as a function of frequency detuning
and delay time, τ , between the two bursts. The absence
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FIG. 4. Ramsey fringes. (a) Measured spin-up probability,
P↑, as a function of fMW and waiting time τ (Bext = 560.783
mT, P = 13.0 dBm) between two π/2 pulses (130 ns) with
equal phase, showing Ramsey interference. Each data point is
averaged over 300 cycles. Inset: Microwave pulse scheme used
for this measurement. (b) Fourier transform over the waiting
time, τ , of the data in panel (a), showing a linear dependence

on the microwave frequency, with vertex at fMW = f
(3)
0 and

slope fRamsey = 2∆fMW (black dashed lines). The expected

position of the FFT of the signal arising from resonance f
(4)
0 is

indicated by the dotted black line. For comparison, the white
dashed line represents the relation fRamsey = ∆fMW . (c-d-
e) Sections of the Ramsey interference pattern in (a) along
the three white dashed lines; the respective waiting times are
indicated also in the inset of each panel. (f) Measured spin-up
probability as a function of the total free evolution time, τ , in
a Hahn echo experiment (pulse scheme shown in inset). The
decay curve is fit well to a single exponential (blue). Here,

fMW = f
(3)
0 , Bext= 560.783 mT.

of a central frequency symmetry axis is due to the pres-
ence of two superimposed oscillating patterns, originat-

ing from the resonances at f
(3)
0 and f

(4)
0 . Figs. 4(c-e)

show sections of the Ramsey measurement in Fig. 4(a),
corresponding to different waiting times τ (see the white
dashed lines). The visibility of the Ramsey fringes clearly
decreases for longer waiting times between the two π/2
pulses. Fitting the decay of the visibility of the fringes
as a function of τ with a Gaussian (∝ exp[−(t/T ∗

2 )
2], see

Sec. I of [30]) we find T ∗
2 = 780 ± 110 ns, in agreement

with the value extracted from the linewidth.

Furthermore, and analogously to the observations of
Fig. 3(a), we report a doubling effect in the frequency
of the Ramsey oscillations, fRamsey , as a function of



5

the detuning ∆fMW = fMW − f
(3)
0 . Fig. 4(b) shows

fRamsey(∆fMW ), extracted from the data in Fig. 4(a)
via a FFT over the waiting time τ . The black dashed
line indicates the condition fRamsey = 2∆fMW , closely
overlapping with the position of the yellow peaks in
the FFT. The black dotted line indicates the condition
fRamsey = 2(fMW − f

(4)
0 ); this second resonance is not

very visible in the data, due to the lower population of the
corresponding valley. For comparison, the white dashed
line indicates the condition fRamsey = ∆fMW , which is
the expected response when driving at the fundamental.

Finally, we perform a spin echo experiment via second
harmonic driving. Fig. 4(f) shows P↑ as a function of
the total free evolution time τ , for a typical Hahn echo
pulse sequence (illustrated in the inset) consisting of π/2,
π and π/2 pulses applied along the same axis, separated
by waiting times τ/2 [41]. A fit to a single exponential
yields T echo

2 = 20.6± 6.5µs at Bext= 560.783 mT, com-
patible with the T echo

2 of 23.0 ±1.2 µs we observed at the
same magnetic field when driving via the fundamental
harmonic (see Sec. I of [30]).
To summarize, we report coherent second harmonic

driving of an electron spin qubit defined in a Si/SiGe
quantum dot, including universal single-spin rotations.
The non-linearity that permits second harmonic driving
is likely related to the anharmonic confining potential for
the electron. This means that routine use of second har-
monics for spin control would be possible provided there
is sufficient control over the degree of anharmonicity of
the confining potential. This could be very useful since
driving a spin qubit at half its Larmor frequency would
substantially simplify the microwave engineering required
for high fidelity qubit control.
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for useful discussions, R. Schouten and M. J. Tiggelman
for technical support. Research was supported by the
Army Research Office (W911NF-12-0607), the European
Research Council and the Dutch Foundation for Funda-
mental Research on Matter. E.K. was supported by a
fellowship from the Nakajima Foundation.

[1] D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120
(1998).

[2] R. Hanson, J. R. Petta, S. Tarucha, and L. M. K. Van-
dersypen, Rev. Mod. Phys. 79, 1217 (2007).

[3] P. Franken, A. Hill, C. Peters, and G. Weinreich, Phys.
Rev. Lett. 7, 118 (1961).

[4] T. F. Heinz, C. K. Chen, D. Ricard, and Y. R. Shen,
Phys. Rev. Lett. 48, 478 (1982).

[5] Y. R. Shen, Nature 337, 519 (1989).
[6] W. Denk, J. H. Strickler, and W. W. Webb, Science 248,

73 (1990).
[7] C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W.W.

Webb, Proceedings of the National Academy of Sciences
93, 10763 (1996).

[8] K. Konig, Journal of Microscopy 200, 83 (2000).
[9] S. Stufler, P. Machnikowski, P. Ester, M. Bichler,

V. M. Axt, T. Kuhn, and A. Zrenner, Phys. Rev. B 73,
125304 (2006).

[10] Y. Nakamura, Y. A. Pashkin, and J. S. Tsai, Phys. Rev.
Lett. 87, 246601 (2001).

[11] A. Wallraff, T. Duty, A. Lukashenko, and A. V. Ustinov,
Phys. Rev. Lett. 90, 037003 (2003).

[12] W. D. Oliver, Y. Yu, J. C. Lee, K. K. Berggren, L. S.
Levitov, and T. P. Orlando, Science 310, 1653 (2005).

[13] S. N. Shevchenko, A. N. Omelyanchouk, and E. Ilichev,
Low Temperature Physics 38, 283 (2012).

[14] S. Poletto, J. M. Gambetta, S. T. Merkel, J. A. Smolin,
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arXiv:cond-mat/1504.06081.
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