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Abstract

We consider the notion of thermal equilibrium for an individual closed macro-
scopic quantum system in a pure state, i.e., described by a wave function. The
macroscopic properties in thermal equilibrium of such a system, determined by its
wave function, must be the same as those obtained from thermodynamics, e.g.,
spatial uniformity of temperature and chemical potential. When this is true we
say that the system is in macroscopic thermal equilibrium (MATE). Such a sys-
tem may however not be in microscopic thermal equilibrium (MITE). The latter
requires that the reduced density matrices of small subsystems be close to those
obtained from the microcanonical, equivalently the canonical, ensemble for the
whole system. The distinction between MITE and MATE is particularly relevant
for systems with many-body localization (MBL) for which the energy eigenfuc-
tions fail to be in MITE while necessarily most of them, but not all, are in MATE.
We note however that for generic macroscopic systems, including those with MBL,
most wave functions in an energy shell are in both MATE and MITE. For a classi-
cal macroscopic system, MATE holds for most phase points on the energy surface,
but MITE fails to hold for any phase point.
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1 Introduction

Thermal behavior of closed macroscopic systems in pure states has been widely studied in
recent years; see e.g., [7, 28, 15, 41, 29, 30, 33, 21, 14, 31, 34, 32, 8], after some pioneering
work even earlier [36, 45, 37, 6, 38, 42]. In particular, the importance of the eigenstate

thermalization hypothesis (ETH) [6, 38] has become widely appreciated, see e.g., [33, 30,
21, 14, 16, 23, 32, 8]. It asserts, in one version, that all energy eigenstates (in a suitable
energy shell) are thermal, i.e., assigning probability distributions to observables that are
characteristic of thermal equilibrium. The ETH holds for many (but not all) macroscopic
quantum systems. When it holds then the system, starting out of equilibrium, will
thermalize (at least in the time average; see Section 4 below). Thus if a system does
not thermalize it must have energy eigenfunctions that fail to be thermal.

An important case of this is that of many-body localization (MBL) [1, 3, 24], for
which the Hamiltonian has (at least some) eigenfunctions that are in some way localized,
so that, for any wave function, the component from these eigenfunctions will not spread
but stay localized forever. For systems with MBL it has been argued that most (if not
all) energy eigenfunctions (in suitable energy intervals) fail to be thermal, and there are
in fact models for which this can be analytically [18], numerically [26], or perturbatively
[2, 3, 35] seen to be the case. At the same time it has been argued [14] that most energy
eigenstates must rather generally be thermal, in particular even for systems with MBL.

To reconcile these statements, we note that there are basically two notions of thermal
equilibrium: a macroscopic notion of thermal equilibrium that we call MATE, and a
more refined microscopic one that we call MITE. While most, but definitely not all,
energy eigenstates of a system with MBL are in MATE (see Section 4), none, or nearly
none, are in MITE [2, 3, 26, 18]. Nonetheless, most pure states in the energy shell are
in both MATE and MITE, even for systems with MBL (see Sections 2 and 3). We say
“most” for “all but a few” or “all except a set of small measure” (i.e., “an overwhelming
majority of”); measures are taken to be normalized; the small measure, in fact, tends
to 0 in the thermodynamic limit.

To be more precise, consider a finite, macroscopic, closed quantum system with
Hilbert space H . Let Hmc be a micro-canonical energy shell, i.e., the subspace of H

spanned by the energy eigenstates with eigenvalues in an energy interval that is small
on the macroscopic scale but contains many eigenvalues. The micro-canonical density
matrix ρ̂mc is defined by ρ̂mc = (dimHmc)

−1P̂mc with P̂mc the projection to Hmc. As
usual, pure states in Hmc are superpositions of energy eigenstates in Hmc. Both MITE
and MATE can be expressed as subsets of the unit sphere in Hmc,

S(Hmc) = {ψ ∈ Hmc : ‖ψ‖ = 1} . (1)

We define them in Sections 2 and 3, respectively, and discuss the properties and differ-
ences of the two notions in Section 4. We also note there that these notions can also be
applied to mixed states.
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2 MATE

The definition of MATE is based on macro observables M̂1, . . . , M̂K . These can be based
on a partition of the system’s available volume Λ ⊂ R3 into cells Λi that are small on the
macro scale but still large enough to each contain a large number of degrees of freedom.
Examples of natural choices of M̂ ’s are, for each cell, the number of particles of each
type, the total energy, the total momentum, and/or the total magnetization.

Following von Neumann [45], we take the M̂j to commute with each other and to be
such that the gaps between the eigenvalues are of the order of the macroscopic resolu-
tion (so that the eigenvalues are highly degenerate). This can be achieved by suitably
“rounding off” and coarse-graining the operators representing the macro observables
[45, 16, 25]. Taking Hmc to be an eigenspace of a “macro energy” operator, and thus
to commute with the other macro observables, all M̂j can be regarded as operators on
Hmc. Their joint spectral decomposition defines an orthogonal decomposition

Hmc =
⊕

ν

Hν , (2)

and the subspaces Hν (“macro spaces”), the joint eigenspaces of the macro observables,
correspond to the different macro states and have very high dimension [17, 20, 14]. It
is generally the case that one of the Hν , denoted Heq, has most of the dimensions of
Hmc, i.e.,

dimHeq

dimHmc
= 1− ε (3)

with ε ≪ 1. 1 A realistic value for ε, say for a cubic meter of air at room conditions,
is less than 10−106 (see Supplementary Note); more generally, ε is exponentially small
in the number of degrees of freedom per cell. We assume here that our system and our
choice of macro observables are such that (3) holds for suitably small ε.

The system is said to be in MATE whenever its wave function ψ lies in the set

MATE =
{

ψ ∈ S(Hmc) : 〈ψ|P̂eq|ψ〉 > 1− δ
}

, δ ≪ 1 , (4)

with P̂eq the projection to Heq. Thus for a state ψ that is in MATE, the probability
is close to one that all macro observables take on their thermal equilibrium values. A
concept of thermal equilibrium along these lines was used before in, e.g., [17, 33, 14,
10, 11, 12]. It is known [14] that, if ε ≪ δ, then MATE has most of the surface area
of S(Hmc), so most pure states are in MATE (see Section 4). It can also be shown, see
(12) below, that most energy eigenstates are in MATE. To be sure, there are states in
the energy shell which are not in MATE; for example, one could take a tensor product
of states of two regions having (what look macroscopically like) different temperatures.

1An exception to the existence of a dominant macro space is provided by first-order phase transitions,
such as in the ferromagnetic Ising model in a vanishing external magnetic field, where Hν has the
appropriate majority of spins up and Hν′ has the appropriate majority of spins down, each having
nearly 50% of the dimension of Hmc for a suitable energy interval.
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An alternative definition due to Tasaki [43, 44] (in the same direction as [5, 41]),
not strictly but approximately equivalent and denoted TMATE here, avoids the step
of rounding off to make the macro observables commute, which may pose substantial
difficulty to carry out in practice. Instead, take M̂1, . . . , M̂K to be the macro observables
before rounding off and coarse graining (mathematically, any self-adjoint operators), let
Vj = tr(ρ̂mc M̂j) be the thermal equilibrium value of M̂j , and let ∆Mj be the macro

resolution of the observable represented by M̂j . Using 1A to denote the characteristic
function of the set A, we define

P̂j = 1[Vj−∆Mj ,Vj+∆Mj ](M̂j) (5)

to be the projection associated with the eigenvalues of M̂j that lie within the macro
resolution of the thermal equilibrium value. Then let

TMATE =

K
⋂

j=1

{

ψ ∈ S(Hmc) : 〈ψ|P̂j|ψ〉 > 1− δ
}

. (6)

Note that 〈ψ|P̂j|ψ〉 is the probability of finding, in a quantum measurement of M̂j on a
system in state ψ, a value that is ∆Mj-close to Vj . If this probability is > 1− δ for at
least the fraction 1− η of S(Hmc) for each j, then TMATE has at least size 1−Kη (in
terms of normalized surface area), which is close to 1 if η ≪ K−1. We note further that
MATE as in (4) can essentially also be written as the right-hand side of (6) if the M̂j

are taken again as commuting and coarse-grained on the scale ∆Mj .

3 MITE

While MATE implies thermal behavior only for macro observables, MITE involves also
“micro” observables, more precisely, those observables concerning only a region smaller
than a certain length scale ℓ. The definition of MITE is inspired by canonical typicality,
the observation [7, 27, 28, 15] that for any not-too-large subsystem S and most wave
functions ψ in the energy shell Hmc, the reduced density matrix of S is close to the
thermal equilibrium density matrix of S, ρ̂ψS ≈ ρ̂mc

S , where ρ̂ψS = trSc |ψ〉〈ψ| is the reduced
density matrix of S obtained by tracing out the complement Sc of S, and ρ̂mc

S = trSc ρ̂mc.

If S is small enough then ρ̂mc
S ≈ ρ̂

(β)
S for suitable β > 0, where the right-hand side is

the partial trace, ρ̂
(β)
S = trSc ρ̂(β), of the canonical density matrix ρ̂(β) = 1

Z
e−βĤ with

Z = tr e−βĤ . As a consequence, for small S, ρ̂ψS ≈ ρ̂
(β)
S . Hence, it does not matter

whether one starts from ρ̂mc or ρ̂(β) (this fact is a version of equivalence of ensembles),
and we will call either one the canonical or thermal density matrix for S.2 We note that

2The density matrix Z−1
S exp(−βĤS) with ĤS the Hamiltonian of S is sometimes called the canonical

or thermal density matrix for S; it agrees with ρ̂
(β)
S if the interaction between S and its complement

can be neglected. If the interaction cannot be neglected, then ρ̂
(β)
S is the correct density matrix to use.
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if ρ̂ψS ≈ ρ̂mc
S for some subsystem S then the same is true for every smaller subsystem S ′

contained in S (“subsubsystem property”), just by taking another partial trace on both
sides of the approximate equation ρ̂ψS ≈ ρ̂mc

S .
The system is said to be in MITEℓ (MITE on the length scale ℓ) whenever its wave

function ψ ∈ S(Hmc) satisfies ρ̂
ψ
S ≈ ρ̂mc

S for every subsystem S corresponding to a spatial
region of diameter diam(S) ≤ ℓ, i.e.,

MITEℓ =
⋂

S : diam(S)≤ℓ

{

ψ ∈ S(Hmc) : ρ̂
ψ
S ≈ ρ̂mc

S

}

(7)

with some precise definition of ≈ (such as the trace norm of the difference being smaller
than a given value). The subsubsystem property implies that every ψ in MITEℓ lies also
in MITEℓ′ for any smaller scale 0 < ℓ′ < ℓ.

MITE is then defined to mean MITEℓ0 with ℓ0 the largest ℓ small enough to ensure

that ρ̂mc
S ≈ ρ̂

(β)
S for every subsystem S with diam(S) ≤ ℓ0. As a practical value, for

example, we may take ℓ0 = 10−3 diam(Λ), where Λ ⊂ R3 is the volume of the whole
system. Thus a state ψ is in MITE if for every subsystem of diameter ℓ0 or smaller, the
reduced density matrix is close to the thermal equilibrium reduced density matrix.

Most ψ ∈ S(Hmc) lie in MITE. Indeed, canonical typicality (in the sense of ρ̂ψS ≈ ρ̂mc
S

for most ψ) holds for subsystems of size up to nearly half that of Λ (that is, of half the
total number of degrees of freedom, see Theorem 1 in [27]). We can choose a moderate
number r (e.g., r = 8 for cube-shaped Λ) of overlapping regions Si ⊂ Λ (e.g., also
cubes) of nearly half the volume so that most ψ satisfy ρ̂ψSi

≈ ρ̂mc
Si

for all 1 ≤ i ≤ r
simultaneously, and so that every region S with diam(S) ≤ 1

4
diam(Λ) is contained in

one of the Si. By the subsubsystem property, also ρ̂ψS ≈ ρ̂mc
S for such regions S, so most

ψ lie in MITEdiam(Λ)/4 and a fortiori in MITE = MITEℓ0 with ℓ0 as above.
A concept along the lines of MITE was used before in, e.g., [30, 21, 34, 23].

4 Discussion

MITE implies MATE.—For any observable Â, let µψ
Â
denote the probability distribution

defined by ψ ∈ S(Hmc) over the spectrum of Â,

µψ
Â
(B) = 〈ψ|1B(Â)|ψ〉 (8)

for all sets B ⊆ R (with 1B(Â) the projection to the subspace spanned by the eigenvec-
tors of Â with eigenvalue in B). Likewise, let µmc

Â
denote the probability distribution

defined by the micro-canonical ensemble,

µmc
Â
(B) = tr

(

1B(Â) ρ̂
mc
)

(9)

for all B ⊆ R; µmc
Â

is the average of µψ
Â
with ψ taken to be uniformly distributed in

S(Hmc).
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Both MITE and MATE are ultimately of the following form (see also [41]): For a
certain family A of observables, consider the set of ψ ∈ S(Hmc) for which µ

ψ

Â
≈ µmc

Â
for

all Â ∈ A . MATE is obtained by taking A = AMATE = {M̂1, . . . , M̂K}, and MITEℓ by
taking A = AMITEℓ

= ∪SAS with the union taken over all regions in Λ of diameter ≤ ℓ
and AS the set of all self-adjoint operators on HS, more precisely,

AS =
{

Â0 ⊗ ÎSc : Â0 self-adjoint on HS

}

, (10)

where Î denotes the identity operator and Sc again the complement of S. Indeed, for
Â = Â0 ⊗ ÎSc and ψ ∈ MITEℓ,

µmc
Â
(B) = tr

(

1B(Â) ρ̂
mc
)

= tr
(

1B(Â0) ρ̂
mc
S

)

≈ tr
(

1B(Â0) ρ̂
ψ
S

)

= µψ
Â
(B) (11)

for all B ⊆ R by (7).
From this perspective it is obvious that MITE implies MATE when based on reason-

able choices: Suppose that L ≤ ℓ0, where L is the length scale of the macro observables—
the diameter of the cells Λi on which the macro observables M̂j were defined at the

beginning of Section 2; that is, suppose that ρ̂ψS ≈ ρ̂mc
S at least up to the length scale of

the macro observables. This is commonly the case; e.g., for a cubic meter of gas at room
conditions, we can realistically take L ≈ 10−4 m and ℓ0 ≈ 10−3 m. As a consequence of
L ≤ ℓ0, AMATE ⊂ AMITE, so if ψ ∈ MITE then ψ ∈ MATE.

As a simple example of a state in MATE that is not in MITE, consider N ≫ 1 spins,
H = (C2)⊗N , Hamiltonian Ĥ = 0, Hmc = H , so ρ̂mc = 2−N Î; choose X1, . . . , XN ∈
{−1,+1} at random independently with equal probabilities, and let ψ = φX1

⊗· · ·⊗φXN

with φ±1 = |σz = ±1〉. Then it is easy to see that most such ψ’s are in MATE, defined
appropriately in terms of the macro-observables describing all components of the total
magnetization of the cells Λi. However, for S any subsystem consisting of a single spin,
ρ̂ψS = |φXi

〉〈φXi
| 6= ρ̂mc

S = ÎS/2, so ψ is not in MITE. This example is very similar to a
typical eigenstate of a system with MBL [18, 35, 23].

ETH.—To come back to the eigenstate thermalization hypothesis (ETH), it comes in
two variants: MATE-ETH and a more refined version MITE-ETH, according to whether
the energy eigenstates are required to be in MATE or MITE. It is MITE-ETH that fails
dramatically in some MBL systems, according to the findings of [2, 26, 18]; there it
is shown for certain MBL systems that a substantial fraction of the energy eigenstates
(in a micro-canonical energy interval), or even all of them, lie outside of MITE. At
the same time, it is easy to see that for every macroscopic quantum system (MBL or
not), MATE-ETH must be almost satisfied, in the sense that most energy eigenstates
|n〉 ∈ S(Hmc) are in MATE: Assuming that (3) holds with ε ≪ δ, we obtain, writing
D = dimHmc, that

1

D

D
∑

n=1

〈n|P̂eq|n〉 =
1

D
tr(P̂eq) = 1− ε , (12)

and since 〈n|P̂eq|n〉 cannot exceed 1, most of these terms must be close to 1.
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If MATE-ETH holds strictly, i.e., if all energy eigenstates in Hmc are in MATE, then
every state ψ ∈ S(Hmc) will sooner or later reach MATE and spend most of the time

in MATE in the long run. That is because [14], writing f(t) = limT→∞
1
T

∫ T

0
f(t) dt for

time averages, |n〉 for the energy eigenstate with eigenvalue En, and ψt = e−iĤtψ,

〈ψt|P̂eq|ψt〉 =
∑

n,n′

〈ψ|n〉 eiEnt〈n|P̂eq|n′〉e−iEn′ t 〈n′|ψ〉 (13)

=
∑

n

∣

∣〈ψ|n〉
∣

∣

2
〈n|P̂eq|n〉 ≥

∑

n

∣

∣〈ψ|n〉
∣

∣

2
(1− δ) = 1− δ , (14)

provided Ĥ is non-degenerate, i.e., En 6= En′ for n 6= n′ (using eiEt = 1 if E = 0 and
= 0 otherwise).3 Since its time average is close to 1, 〈ψt|P̂eq|ψt〉 must be close to 1 for
most t in the long run.

It follows from this that systems with MBL for which the transport coefficients van-
ish, so that an initial state ψ with a non-uniform temperature will remain so indefinitely,
cannot have all of its energy eigenfunctions in MATE. Since most energy eigenstates are
in MATE, such ψ must be a superposition of predominantly those rare eigenstates that
are not in MATE.

This leads to the question whether there are macroscopic systems for which all

energy eigenstates are in MATE—i.e., whether MATE-ETH ever strictly holds. It is
known that this is so for a random Hamiltonian whose eigenbasis is uniformly chosen
among all orthonormal bases [14]; see also [45, 16]. Some numerical evidence [19] points
to the existence of systems with realistic interactions for which all energy eigenstates
are in MITE and thus also in MATE.

For MITE-ETH, there are several results [33, 21, 31], one of which [33] is based on
Srednicki’s [39, 40] extension of the ETH to off-diagonal elements.

Mixed states.—Once we have the notions of MITE and MATE for pure states ψ,
they are easily generalized to mixed states ρ̂: MATE occurs if tr(P̂eq ρ̂) > 1 − δ, and
MITE if ρ̂S ≈ ρ̂mc

S for all subsystems S defined by spatial regions of diameter ≤ ℓ0. Note
that neither MATE nor MITE requires that ρ̂ be close to ρ̂mc or ρ̂(β).

Thermal equilibrium in classical mechanics.—Only one of the two notions MITE and
MATE can be satisfied for pure states in classical mechanics, namely MATE. That is
because a “pure state” corresponds in classical mechanics to a point X in phase space,
while a “mixed state” corresponds to a probability distribution over phase space. Since
X specifies the positions and momenta of all particles, it also provides a pure state for
any subsystem. In contrast, in quantum mechanics ρ̂ψS can be mixed, and in fact is mixed
except for product states. So in classical mechanics it is never true for a system in a pure
state that a subsystem S could have a state close to a thermodynamic ensemble such
as the marginal (obtained by integrating out the variables not belonging to S) of the

3In fact, the assumption of non-degeneracy can be dropped: If we number the eigenvalues as En

with En 6= En′ for n 6= n′ and let |n〉 denote the normalized projection of ψ to the eigenspace of En,
then the calculation (13)–(14) still applies.
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micro-canonical distribution (i.e., uniform over the energy shell) or the canonical one for
the whole system. In contrast, MATE is analogous to Boltzmann’s [4, 9, 13, 20] notion
of thermal equilibrium for a closed classical system, based on a partition of phase space
into macro states Γν . (Note that there is no difference between MATE and TMATE
classically, as all observables commute.)

5 Conclusions

Perhaps the most surprising aspect of the situation is that the various criteria for thermal
equilibrium of pure states proposed in the literature fall into two groups that differ
substantially in how much they demand.

Arguably, the essence of thermal equilibrium is what characterizes it in thermody-
namics: that a system appears stationary on the macro level, and that temperature
and all chemical potentials are spatially uniform. This corresponds to MATE, which
may therefore be regarded as the direct expression of thermal equilibrium. On the other
hand, since MITE is the stronger statement, and since it is usually true that macroscopic
quantum systems approach MITE (MBL systems being an exception), it is natural to
consider MITE, and it would seem artificial to not regard it as a new kind of thermal
equilibrium property emerging from quantum entanglement.
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