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We report a new limitation on the ability of physical systems to perform computation — one
that is based on generalizing the notion of memory, or storage space, available to the system to
perform the computation. Roughly, we define memory as the maximal amount of information that
the evolving system can carry from one instant to the next. We show that memory is a limiting
factor in computation even in lieu of any time limitations on the evolving system — such as when
considering its equilibrium regime. We call this limitation the Space-Bounded Church Turing Thesis
(SBCT). The SBCT is supported by a Simulation Assertion (SA), which states that predicting
the long-term behavior of bounded-memory systems is computationally tractable. In particular, one
corollary of SA is an explicit bound on the computational hardness of the long-term behavior of a
discrete-time finite-dimensional dynamical system that is affected by noise. We prove such a bound

explicitly.

Can we use computers to predict the future of evolv-
ing physical systems? What are the computational ca-
pabilities of physical systems? The fundamental Church-
Turing thesis (CTT) [1], and its physical counterparts
[2, 3] assert that any computation that can be carried out
in finite time by a physical device can be carried out by
a Turing Machine. The thesis is sometimes paraphrased
in the following way: provided all the initial conditions
with arbitrarily good precision, and random bits when
necessary, the Turing Machine can simulate the physical
system S over any fixed period of time [0, T] for T' < co.

However, there exists conceivable situations which,
while respecting all physical principles, would allow for
nature to exhibit behavior that cannot be simulated by
computers [4, 5]. Note that the power of a physical pro-
cess which is being used as a computer, critically depends
on our ability to prepare the system and take measure-
ments of it. Therefore, the impossibility to simulate some
natural processes does not immediately contradict CTT.
In particular, it is not clear that the finite state spaces ac-
cessed by (quantum or classical) computers are sufficient
to simulate, with arbitrary accuracy, all the processes
one finds in nature, which may take place in infinite-
dimensional spaces [4].

Moreover, even if we can simulate a system for any
fixed period of time 7', in many situations one would like
to know more and predict the asymptotic properties of
the system as T — oo, i.e. as it reaches its equilibrium
regime. In this case, the computational unsolvability of
problems like the Halting Problem — itself a long-term
property of Turing Machines — implies that rich enough
physical systems may exhibit non-computable asymp-
totic behavior [6-17].

As Feynman describes it [18], to simulate the statistical
asymptotic behavior of a physical system (say its equilib-
rium regime) means to have a machine which, when pro-

vided with a sequence of uniform random bits as input,
outputs a sequence of states of the system with exactly the
same probability as nature does. Note that even if there
is a finite number of states which are distinguishable for
the physical measurement, the associated probability dis-
tribution may well be continuous. The non-computable
examples mean that this infinite time horizon simulation
is sometimes just not possible. For instance, there exist
computable dynamical systems (e.g. maps on the unit
interval [17] or cellular automata [19]) for which there is
a positive measure set of initial conditions leading to the
same equilibrium regime — so it is a “physical state” —
that yet no Turing machine can simulate in this way.

On the other hand, it has also been observed that
this analysis may be affected by restricting some of the
features related to the physical plausibility of the sys-
tems considered, such as dimensionality, compactness,
smoothness or robustness to noise — the long term be-

havior of such restricted systems may be easier to predict
[4, 11, 15, 16, 20].

In this Letter, we report a new bound on the ability of
physical systems to perform computation — one that is
based on generalizing the notion of storage space from
computational complexity theory to continuous physi-
cal systems. More precisely, we provide a formal defi-
nition of memory for physical systems and postulate an
explicit quantitative bound on the computational com-
plexity of their simulations. According to our postu-
late, bounded memory physical systems should not ex-
hibit non-computable phenomena even in the infinite-
time horizon. As evidence for our postulate, we rigor-
ously prove that for compact noisy systems, the non-
computable phenomenon is broken by the noise even in
the infinite-dimensional case. Moreover, to substantiate
the quantitative part of the thesis, we show that if the
noise is not a source of additional complexity, then the



additional space requirements for simulating the system
below the noise threshold are minimal.

Consider a closed, stochastic system & = X; over a
state space X. If the time ¢ is discrete, define the memory
available to S as

M(S) :=sup sup

t p distribution on X

I, (X3 Xeg1). (1)

Here I(X}; Xt41) is Shannon’s mutual information [21].
If f(x,y) is the PDF of the distribution of (X, X;y1)
where X; ~ p and X¢411 ~ X¢t1]x,, then
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We take the supremum over all possible distributions .
Therefore M(S) measures the maximum amount of in-
formation the system can carry from one time step to the
next. Note that if the space X’ is finite of size N then
M(S) is bounded by the entropy H(X;) < log, |X| =
logy N. As discussed below, in the presence of noise, all
bounded finite-dimensional systems have finite memory
available.

For continuous-time systems we define memory avail-
able at time lapse At as the amount of information that
may be preserved for At time units:

Mai(S) :==sup sup
t p distribution on X

Iy (X5 Xirae) (3)

Information theoretic considerations imply that Ma:(S)
is a non-increasing function of A¢. The time-lapse At
is chosen to be the highest among the values of At for
which the behavior of the system at time scales be-
low At is dynamically and computationally simple. It
is possible to artificially construct an example where
lima¢—o Mai(S) = oo, and where by encoding compu-
tation on a shrinking set of time intervals the computa-
tional power of the system is unbounded [22]. However,
it has been pointed out [23, 24] that quantum mechanical
considerations impose an ultimate lower bound At > t*
[25] on the time it takes for a physical device to perform
one logical operation.

We postulate that the memory M(S) is an intrinsic
limitation on the ability of physical systems to perform
computation. We call the limitation the Space-Bounded
Church Turing thesis (SBCT ):

[SBCT]: If a physical system S has memory s = M(S)
available to it, then it is only capable of performing com-
putation in the complexity class SPACE(s°()), even
when provided with unlimited time.

SBCT is supported by the following assertion:
[Simulation Assertion, SA]: The problem of simulat-

ing the asymptotic behavior of a physical system S as in
SBCT with n precision bits is in the complexity class
SPACE ((s + logn)°™).

SA implies, in particular, that the long-term behavior
of bounded-memory systems is computable. This covers
a broad class of noisy systems. Interestingly, a number
of low-dimensional systems with non-computable long-
term behavior is known [11-17]. These examples require
considerable care in their construction. As explained be-
low, assuming the SBCT one should expect these con-
structions to be delicate, to the point of making them
physically implausible.

It is clear that SA implies SBCT. While, logically
speaking, the converse also (almost) holds, it is still use-
ful to make a distinction between the two statements.
A low-memory system S may be hard to simulate, for
example, because of the hardness of the noise operator.
Such a system would violate SA. However, it might still
essentially satisfy SBCT — being incapable of perform-
ing computation outside the class SPACE(s°()) — save
for the problem of simulating S itself.

SBCT can be considered in the context of other quan-
titative variants of the Church-Turing Thesis, notably
the Extended Church-Turing Thesis (ECT) which asserts
that physically-feasible computations are not only com-
putable, but are efficiently computable in the sense of
computational complexity theory [26]. Whereas previ-
ous discussions of efficiency focused on time complezity
[27-31], we shift the discussion to storage space complex-
ity (known as space complexity in the Computer Science
literature). This shift has the benefit of allowing one
to make assertions bounding the computational power of
systems even when provided with unlimited time — we
e.g. can allow the system to reach equilibrium at t—o0,
and consider the outcome to be the output of the compu-
tation. We assert that this outcome will still not enhance
the computational power of the system beyond its mem-
ory constraints.

In the theory of computational complexity,
SPACE(S(n)) is the complexity class of problems
that can be solved by a Turing Machine which uses at
most S(n) bits of memory to solve instances of size n
[32, 33]. Of particular interest are the classes of problems
PSPACE and LOGSPACE where S(n) = n®® and
S(n) = O(logn), respectively [34]. Putting these classes
in the context of P and NP, the following chain of
inclusions is known:

LOGSPACE C P ¢ NP Cc PSPACE.

All of these inclusions are believed to be strict, although
only the fact that LOGSPACE C PSPACE is known.

Space-bounded complexity classes exhibit several im-
portant robustness properties that do not have a parallel
when considering time-bounded computation. For ex-

ample, the space-bounded analogue of P ~ NP has been
resolved in the affirmative: PSPACE = NPSPACE
[35] — thus PSPACE is closed under the use of non-
determinism. The question of whether quantum com-
putation speeds up computation time in some cases, i.e.



whether P C BQP, remains open, but likely the answer
is that it does [36, 37]. In the case of space limitations,
it is known that BQPSPACE = PSPACE, and thus
quantum computing is not particularly useful [38] (sug-
gesting that, unlike the ECT, the SBCT has a good
chance of holding in a quantum world).

A bound of S(n) on the amount of memory used by a
computation means that the machine may be in at most
25(") distinct states. If the computation is deterministic,
this imposes a natural hard limit of 25(") on its compu-
tation time: the computation either terminates in 25()
steps, or ends up in an infinite loop. If the computation
is randomized, then it naturally translates into a Markov
chain on its 25(") states. The stationary distribution(s)
of the chain, which can be computed in poly(S(n)) space,
characterize the infinite-time horizon behavior of the ma-
chine. We assert that more generally, the ability of phys-
ical systems to remember information is the limiting fac-
tor for their computational power.

While in many cases the complexity of the system
falls below the bound provided by SBCT, the power of
SBCT partially arises from the fact that it is generally
much easier to estimate the memory available to a system
than its computational power /hardness.

The non-computability constructions mentioned ear-
lier mean that while analytic methods can prove some
long-term properties of some dynamical systems, for
“rich enough” systems, one cannot hope to have a gen-
eral closed-form analytic algorithm, i.e. one that is not
based on simulations, that computes the properties of
its long-term behavior. This fundamental phenomenon
is qualitatively different from chaotic behavior, and has
even led some researchers to claim [39] that the enterprise
of theoretical physics itself is doomed from the outset;
rather than attempting to construct solvable mathemat-
ical models of physical processes, computational models
should be built, explored, and empirically analyzed.

However, it is a notable fact that in all the specific
low-dimensional examples the non-computability phe-
nomenon is not robust to nowse: all these constructions
are based on a fine structure responsible for Turing simu-
lation which is destroyed once one introduces even a small
amount of noise into the system. This has been explicitly
observed e.g. for neural networks [40] and reachability
problems [41]. This is consistent with the SBCT: a low-
dimensional compact system affected by noise becomes a
bounded-memory system, and is therefore explicitly lim-
ited in its computational power, and cannot serve as a
universal computer.

In [42], an interesting example of a constant-
dimensional analytic system capable of robustly perform-
ing universal computation is constructed. However, this
system acts on an unbounded domain, and has therefore
infinitely many robustly distinguishable states; i.e. infi-
nite memory. This is again consistent with the SBCT.

We now turn to the rigorous analysis of discrete-time

dynamical systems over continuous spaces, affected by
random noise. In such models, the evolution is governed
by a deterministic map 7" acting on phase space X, to-
gether with a small random noise p°. The noisy system
S. jumps, in one unit of time, from state = to T'(x) and
then disperses randomly around T'(x) with distribution
pET(w). The parameter ¢ controls the “magnitude” of the
noise, so that p%.,,(-) = T'(z) as € — 0 [43]. For exam-
ple, pET(I)(-) could be taken to be uniform on an e-ball
around T'(x) or a Gaussian with mean T'(z) and vari-
ance €. In all what follows we will assume, for the sake of
simplicity, that the underlying system is one-dimensional
and size(X)=1. That is, X’ can be thought of as the in-
terval [0, 1].

By expressing mutual information in terms of entropy
and conditional entropy, it is not hard to estimate the
memory of the system S; for each of these types of noise
(uniform on an e-ball or Gaussian). Indeed, if fx stands
for the PDF of a random variable X, then the entropy of
X is defined by

H(X) =~ [ fx(e)log(x(a) da,
and mutual information can be expressed as
I(Xy; Xpq1) = H(Xpp1) — H(Xe41|Xo).

On the one hand, since H(p®) = O(log(e)) for both
uniform on an e-ball and Gaussian distributions and
since H(X;41) < 0 and X;11|X; ~ p°, we obtain that
I(Xy41; Xt) < O(log1/e). On the other hand, H(X;41)
is maximized by the uniform distribution on X', having
a value of log(size(X)) = 0. Tt follows that I(X; Xtq1)
is maximized by this distribution as well, and therefore
M(S:) = O(log(1/e)). The SBCT then predicts that
the computational power of the system S; is in the com-
plexity class SPACE (logo(l)(l/s)).

How can the actual computational power of these sys-
tems be estimated? In order to give an upper bound one
would have to give a generic algorithm for the noisy sys-
tem that computes its long-term features. This would
establish the SA for the system, and thus imply the
SBCT. In order to give a lower bound one would have to
show that even in the presence of noise the system is ca-
pable of simulating a Turing Machine subject to memory
restrictions. We now explain how to prove such bounds.

Since the evolution of these systems is stochastic, only
the statistical properties can be studied — instead of
asking whether the system will ever fall in a given region
B, we shall ask what is the probability of the system
being in such a region, as t—oc.

These properties are mathematically described by the
invariant measures of the system — the possible statisti-
cal behaviors once the system has converged to a “steady
state” distribution. Quantities such as Lyapunov expo-
nents or escape rates can be computed from the relevant



invariant measure. Standard references on this material
are [44-46).

Here, by computing a probability distribution p over
[0,1] we mean to have a finite algorithm A that can
produce arbitrarily good rational approximations to the
probability of any interval with rational endpoints. That
is, the algorithm A, upon input (a,b,d) € Q3, must out-
put a rational number A(a,b,d) satisfying |A(a,b,d) —
pla,b)| < 0. See for instance [47]. This definition is
equivalent to the existence of a probabilistic machine pro-
ducing a sequence of states distributed exactly according
to u [48].

Our first result, which can be seen as supporting the
qualitative part of SBCT, shows that the addition of
any amount of noise to a system is sufficient to de-
stroy any non-computable behavior, even in the infinite-
dimensional case.

Statement A: If a compact system is affected by small
random €-noise as described above, then all its ergodic
invariant measures are computable.

Intuitively, this theorem says noise turns asymp-
totic statistical properties from non-computable to com-
putable. Its proof essentially follows from the fact that
the presence of noise forces the system to have only “well
separated” ergodic measures. An exhaustive search can
then be performed, and compactness guarantees that all
such measures will be eventually found (there can only
be finitely many of them). We note that the result holds
even if the state space is infinite dimensional. We refer
to [49] for a complete proof.

Thus, we know that in presence of e-noise, ergodic mea-
sures are all computable. In addition, according to the
SBCT, their computational power should be bounded
in terms of their dimension and size. In order to give an
upper bound, we prove a version of the SA by exhibiting
an algorithm that computes the invariant measure to ar-
bitrary accuracy using very little space. Specifically, we
show:

Statement B: Let S be a compact, constant-dimensional
system affected by e-Gaussian noise. Suppose that the
transition function f is uniformly analytic and can
be computed to within precision 2™ wusing O(logm)
space. Then the invariant measure of the noisy sys-
tem Se can be computed with a given precision 27" in

SPACE(poly(log1/¢) + poly(logn)).

This statement implies, in particular, that the long-
term behavior of noisy systems at scales below the noise
level is computable in time quasipolynomial in n. Intu-
itively, this means that, at the right scale, the behavior
of the system is governed by the efficiently predictable
micro-analytic structure of the noise, rather than by the
macro-dynamic structure of the system that can be com-
putationally difficult to predict.

The formal proof of the above statement can be found
in the accompanying paper [50]. Moreover, up to the

polynomial factors, the statement can be shown to be
tight: we can robustly separate 1/e states of S, and
thus simulate a computation that uses ~ log1/e bits of
memory. Therefore, simulation using less than log1/e
bits of memory is impossible due to the Space Hierarchy
Theorems [33]. Note that the output of a precision-27"
calculation requires > n bits to write down. In the con-
text of space-bounded computation, the output is stored
in a write-only memory that is not part of the computa-
tion space. Still, in order to be able to write to a size-n
outside memory, one needs to at least store indexes using
log n bits, and thus the dependence on n is also optimal
up to polynomial factors.

The algorithm establishing Statement B and its anal-
ysis consists of two main parts. The first idea is to ex-
ploit the mixing properties of the transition operator P
of the perturbed system S.. The transition operator con-
tains Gaussian noise, and it thus has a spectral gap of
at least exp(—1/g?), and will mix in time on the order of
T =~ exp(—1/¢?). We represent density functions of mea-
sures using piece-wise analytic functions with each piece
of size &~ . On each piece we approximate the corre-
sponding analytic function using ~ n terms of its Taylor
expansion, so that the density function is represented by
a point in R” where D ~ n/e. When we consider the
action of the transition operator P on these coefficients,
we obtain a linear map Mp whose coefficients can be
computed in space poly(log1/e) + poly(logn). By the
mixing property, to approximate the invariant measure
of P it suffices to raise Mp to the T-th power.

The second part of the argument deals with raising
a D x D matrix Mp to power T =~ 2P using only
poly(log D) space. To the best of our knowledge, this
problem has been previously addressed when T is poly-
nomial but not exponential in D. The proof in [50] uses
a number of techniques in space-efficient computation to
obtain a degree-O(D) polynomial p(-) such that the en-
tries of p(Mp) — ML have magnitude < 27"

In conclusion, we postulated a principle that allows us
to quantitatively bound the computational power of any
device built out of a closed physical system — even when
the device is allowed to run for an unlimited amount of
time — in terms of the memory of the system. We have
shown that this bound is tight for systems modeled by
randomly perturbed dynamical processes, which account
for a large part of physics. Additionally, we have shown
that the asymptotic behavior of these systems can be
computed at arbitrary precision, and that when comput-
ing below the noise level, the simulation can be achieved
using an extremely limited amount of memory. Concern-
ing quantum systems, the fact that general models like
Topological Field Theories can be efficiently simulated by
quantum computers [51] which, in turn, can be simulated
by classical ones with only a quadratic increase in mem-
ory [38], suggests that our results apply in the quantum
world as well.
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