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We study how local rearrangements alter droplet stresses within flowing dense quasi-two-
dimensional emulsions at area fractions φ ≥ 0.88. Using microscopy, we measure droplet positions
while simultaneously using their deformed shape to measure droplet stresses. We find that rear-
rangements alter nearby stresses in a quadrupolar pattern: stresses on neighboring droplets tend
to either decrease or increase depending on location. The stress redistribution is more anisotropic
with increasing φ. The spatial character of the stress redistribution influences where subsequent
rearrangements occur. Our results provide direct quantitative support for rheological theories of
dense amorphous materials that connect local rearrangements to changes in nearby stress.

PACS numbers: 82.70.Kj, 83.80.Iz, 47.50.Ef

Soft glassy materials consist of particles that are disor-
deredly crowded together. Many of their physical prop-
erties depend on the control parameter φ, the fraction of
volume occupied by particles. Such systems are glassy
(“jammed”) when φ exceeds a critical value φc such that
the particles are forced into contact [1, 2]. Under suffi-
cient stresses, jammed systems will flow macroscopically
via microscopic particle rearrangements [3, 4]. These re-
arrangements result in stress and velocity fluctuations at
the particle scale [1, 5–9], and the size and frequency
of these fluctuations are thought to relate to the macro-
scopic response of the material [10–12].

In such dense and disordered systems, simulations
showed that particle rearrangements are initiated by a
build up of local inter-particle stresses that become un-
stable. Particles rearrange and change the forces they
exert on neighboring particles, leading to an anisotropic
redistribution of stress over a few particle diameters [10–
14]. This redistribution is of significant interest be-
cause it can increase the tendency for neighboring par-
ticles to undergo a rearrangement [10, 11, 15]. This can
lead to avalanches, where one rearrangement alters the
stress nearby and triggers a series of other rearrange-
ments [11, 16–18]. Such behavior implies that stress and
strain rate are coupled non-locally, and knowing the de-
tails of the stress redistribution is critical to accurately
modeling soft glassy flows [15, 17–19].

It is challenging to directly measure the stress redistri-
bution over a large range of φ. Many prior experiments
were limited to tracking particle positions without knowl-
edge of the stresses [5–8, 20–25]. Some simulations [10–
13] focused on the dry foam limit φ → 1 where the gas
bubbles occupy nearly all of the volume. Experiments
with rigid or slightly deformable particles have the com-
plementary limitation: because particles are close packed
at φc, these experiments are done at φ ≈ φc [5, 20–27].
No prior experiment has studied stresses over a large
range of φ. In this Letter, we present experiments study-
ing the flow of quasi-two-dimensional emulsion droplets
over a large range of area fractions φc < φ < 1. We si-
multaneously measure droplet positions and inter-droplet
forces allowing us to quantify the connection between
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FIG. 1. (Color online). Schematic of our two-dimensional
flow geometry. The embedded flow field indicates the region
where the flow is imaged (snapshot of this region shown on
left with mean droplet diameter 〈d〉 = 188 µm). The length
and color of the arrows indicate mean velocity. The dashed
black rectangle is the region in the field of view where T1
events are considered for analysis. On the snapshot, force
chains [28] have been drawn as lines, where the largest forces
are in red. Snapshot and velocity field both correspond to the
first row of Table 1 in the supplemental materials.

droplet rearrangements and stress redistribution.

We confine bidisperse emulsions (mineral oil in water)
between two glass slides of dimensions 25 mm × 75 mm
separated by a ∼ 100 µm spacer (transparency film). We
produce our droplets using microfluidics [29] and stabi-
lize them from coalescence with Fairy soap [28]. Their
diameters are larger than the sample chamber gap dis-
tance so that the system is quasi-2D. A schematic of our
chamber is shown in Fig. 1(a) which consists of two chan-
nels of widths wx ≈ wy that meet at a right angle. A sy-
ringe pump injects the emulsion into the chamber, far up-
stream from the imaged region, as indicated in Fig. 1. In
the corner, droplets change direction, resulting in many
rearrangements. We take a total of 13 data sets at dif-
ferent area fractions φ ranging between 0.88 - 0.96 and
at 4 different strain rates γ̇ = 1.3− 5.5 hr−1 (see Table 1
in supplemental materials for experimental details). We
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FIG. 2. (Color online). (a) T1 event, where 4 droplets ex-
change neighbors. (b) Coordinate system relative to midpoint
of T1 event. The converging axis is the line joining the centers
of the two droplets moving closer together; the direction of the
axis is arbitrary. This axis defines the Cartesian coordinates
(x, y) and polar coordinates (r, θ).

record images with a CCD camera at 2 images/s. We
post-process the images to identify [28] and track droplets
[30].

Figure 1 shows a typical flow field in the region where
we take our data. There is a velocity gradient which
induces droplet rearrangements. The gradient is non-
uniform giving a strain rate that depends on space, al-
though it varies by no more than a factor of ∼ 2 across
the field of view for our experiments. For the strain rates
we study, our results are independent of strain rate. Ac-
cordingly, from the droplet trajectories we determine the
global (mean) strain rate within our observation region
and report this as γ̇global for each data set presented in
Table 1 of the supplemental materials.

We also determine the repulsive contact force ~fij be-
tween droplets i and j in contact. The quasi-2D droplets
prefer to have circular outlines due to surface tension,
and their deformation away from circular can be related
to the contact forces within 15% uncertainty using our
previously developed image analysis technique [28]. Fig-
ure 1 shows some of the larger forces between droplets.
We also determine the viscous droplet-droplet forces (less
than 1% of the mean repulsive force) and droplet-glass
forces (less than 4% of the mean repulsive force); see
Ref. [31] for details. Since the viscous forces are small,
we ignore their contribution to the stress.

Using the repulsive contact forces, the instantaneous
stress tensor on each droplet is computed using

←→σi = 1/Ai
∑
j

~r cij ⊗ ~fij (1)

where ~r cij is a vector from the center of droplet i to the
center of contact ij, ⊗ is an outer product, and Ai is the
Voronoi area around droplet i [32, 33]. The off-diagonal
term of this tensor is the shear stress, which depends on
the orientation of the coordinate system. We rotate the
coordinate system to maximize the time- and droplet-
averaged off-diagonal term of the stress tensor; this ro-
tation is ≈ 45◦ (but varies slightly from experiment to
experiment). In this rotated coordinate system, we use
the instantaneous off-diagonal element as the instanta-
neous shear stress σi(t) on each droplet.

In 2D systems, the simplest topological rearrange-
ments involve neighbor exchanges of four droplets [34],

FIG. 3. (Color online). Distribution of stress decrease on
the rearranging droplets. The color of the curve indicates
area fraction. The solid curves are data at γ̇ = 5.5 hr−1, the
dashed lines at γ̇ = 2.7 hr−1, and the dashed dot lines at γ̇ =
2.4 hr−1. The filled triangle black curve is the distribution of
individual droplet shear stresses σi in a sample at φ = 0.89,
normalized by 〈σi〉. Inset: Average stress relaxation with area
fraction. The legend indicates data at different strain rates.
The black dashed line is a power law fit 〈δσ〉 = A(φ − φc)β ,
where β = 0.57, A = 38 µN/m, and φc = 0.86.

known as a T1 event. This exchange is shown in Fig. 2(a):
two neighboring droplets become next-nearest neigh-
bors while two next-nearest neighbors become neighbors.
Sometimes larger groups of droplets rearrange simulta-
neously, but such events can always be decomposed into
individual T1 events [9]. To define the start and end of
a T1 event, we consider only T1 events that lead to a
stress relaxation on the four rearranging droplets, and
define the start as the time where the stress is maximal
before the neighbor exchange and the end as the mini-
mum in stress after the neighbor exchange. Between the
start and the end of the T1 event the stress decreases by
δσT1, which varies between rearrangements.

To examine the variability of δσT1, we show the proba-
bility distributions of δσT1 as the curves in Fig. 3. After
normalizing by the mean stress drop 〈δσT1〉, all distri-
butions overlap. Intriguingly, the distributions resemble
the distribution of the instantaneous individual droplet
stresses P (σi/〈σ〉), plotted as triangles in Fig. 3 (at a
representative area fraction φ = 0.93; the shape does not
vary significantly at different φ).

While the variation in δσ about the mean is indepen-
dent of the area fraction, the mean stress drop is not.
In the inset of Fig. 3, we show that 〈δσ〉 increases with
area fraction relative to the jamming point φc = 0.86,
where φc was measured in Ref. [28]. The data for dif-
ferent strain rates overlap, as we are in the quasi-static
regime. We fit the data using 〈δσ〉 ∼ (φ − φc)

β with
β = 0.57, similar to scaling behavior found for the shear
modulus, pressure, and coordination number [1, 35].

Thus far we focused on the stress drop averaged over
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FIG. 4. (Color online). Measured stress propagators. The last
panel is the theoretical stress propagator for φ = 1 [13]. Blue
indicates an average stress decrease and red indicates a stress
increase. Distance to center of T1 event is measured in units
of average droplet diameters. Both φ = 0.93 panels and both
φ = 0.96 panels are two different samples with the same φ,
indicating that the stress propagator is not completely repro-
ducible between experiments. To improve statistics in each
panel, we impose four fold symmetry on Π. Prior to imposing
symmetry, the raw data have four fold symmetry within the
statistical noise limit.

the four droplets defining the T1 event. We next exam-
ine how the T1 event redistributes stress on the rest of
the sample. To do this, we define a coordinate system
for each T1 event, as shown in Fig. 2(b), using the con-
verging direction of droplets as the x-axis. Positions are
measured relative to the center of the T1 event.

The stress redistribution around a T1 event can be
characterized by a stress propagator Π(x, y), defined as
δσ(x, y) = Π(x, y)δσT1. Here, δσ(x, y) is the change in
stress on a droplet located a distance (x, y) away from a
T1 event that has a particular stress drop of size δσT1.
Given a stress fluctuation on the rearranging droplets,
Π(x, y) quantifies the mean size of the stress fluctuation
at (x, y). Recall, δσT1 measures the amount the stress
has decreased, and thus, when Π(x, y) is positive the
stress at (x, y) decreased. We will focus on the stress
propagator Π(x, y) averaged over 100-600 T1 events (we
ignore the angular brackets in our notation).

Figure 4 shows the measured stress propagator for a
range of area fractions. The stress can decrease (posi-
tive Π, blue) or increase (negative Π, orange) on nearby
droplets depending on their relative position to the T1
event. Along the converging and diverging axes we find
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FIG. 5. (Color online). (a) Decay of stress propagator along
the converging and diverging directions in a sample at φ =
0.89, The colored dashed lines are power law fits Π ∼ r−α with
α = 2.04 and 1.94 for the converging and diverging directions
respectively. For comparison, the black dotted line has power
law slope -2. (b)-(d) The stress propagator for each data set
is fit to Πmodel = a + b(〈d〉/r)2 + c(〈d〉/r)2 cos(4θ), and the
fitting parameters a, b, and c are shown as functions of area
fraction.

that for all φ the stress decreases on droplets near the
rearrangement. In contrast, along the directions 45◦ to
the converging and diverging directions, the stress change
depends on φ. At low area fractions, the stress propa-
gators show that a rearrangement tends to decrease the
stress on all nearby droplets, while at larger area frac-
tions, droplets along the diagonal directions tend to have
their stress increased.

Picard et al. [13] model a T1 event as a localized re-
gion undergoing pure shear within a continuous elastic
material. They predict a quadrupolar field for the stress
propagator obeying Π = (〈d〉/r)2 cos(4θ), similar in form
to that derived by Eshelby for an analogous inclusion
problem [36, 37], and shown in the bottom right panel
of Fig. 4. In simulations on dry foams (φ = 1), Kabla
et al. [12] observed a qualitatively similar quadrupolar
stress propagator, and this was subsequently seen in a
simulation of a 2D glass [14].

We test Picard et al.’s prediction of a 1/r2 scaling by
looking at Π along the converging and diverging direc-
tions. An example is given in Fig. 5(a). The data are
consistent with 1/r2 decay, indicated by the dotted line.
Next we quantify the anisotropy of the stress propaga-
tor by adding onto the prediction of Picard et al. two
isotropic terms, and fitting the raw data (without im-
posing 4-fold symmetry) to Πmodel = a + b(〈d〉/r)2 +
c(〈d〉/r)2 cos(4θ), with fit parameters a, b, and c. This is
an empirical fit that works well for all our data.

The fitting parameters are shown in Fig. 5(b) - (d).
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FIG. 6. (a) Mean displacement ~uavg(x, y) of droplets near a
T1 event – four circles are the mean positions of droplets un-
dergoing a T1 event and the axes are in units of 〈d〉. The mean
displacement field does not vary with φ, so data are averaged
from all experiments, and four-fold symmetry is imposed. (b)
We compute the standard deviation at each (x, y) between the
mean flow field ~uavg(x, y) and the flow fields ~ui(x, y) around
each T1 event i. The standard deviation is spatially averaged
within a ring of radius 1.2〈D〉 ≤ R ≤ 2.0〈D〉 around the T1
event centers (dashed circles in (a)), and is plotted in (b) as a
function of area fraction. ~ui(x, y) is normalized by the mean
displacement of the T1 droplets for each φ, so a value of 1 in
the standard deviation means that the variability of droplet
displacements is equal to the magnitude of the displacement
of the T1 droplets.

The monopole term a has no apparent φ-dependence, and
is slightly positive, indicating that the global stress tends
to decrease during a T1 event. b (the isotropic term)
decreases with φ, while c (the quadrupolar anisotropic
term) increases with φ. These trends indicate a transition
from an anisotropic stress relaxation to an isotropic one
as the jamming area fraction (φc = 0.86) is approached
from above. This may be due to a change in the na-
ture of how droplets move relative to each other as φc
is approached. Near φc, droplets contact an average of
four neighboring droplets while as φ → 1 droplets con-
tact all of their neighbors, six on average [1, 2]. The
latter situation is closest to the isotropic homogeneous
elastic materials that Picard et al. considered [13] (and

earlier Eshelby [36, 37]). In contrast, near φc, exactly
how neighboring droplets move varies between different
T1 events.

Figure 6 confirms that as the jamming point is ap-
proached from above the motion of droplets near a T1
event is more variable. Figure 6(a) shows the mean dis-
placement field around a T1 event, with a dipole struc-
ture as expected and as seen in prior work [14, 22, 25, 38].
Figure 6(b) plots the variability in the displacement field
between T1 events, demonstrating that droplets exhibit
larger fluctuations from the mean as φ→ φc from above.
(The outlier at φ = 0.90 is for the experiment with the
fewest number of T1 events, 111, although we do not see
any other discrepant behavior for this experiment.) The
variable flow fields at low φ suggests that the stress redis-
tribution pattern will also be more variable from event to
event, thus leading to a more isotropic Π when the data
are averaged.

Our experiments demonstrate that simple rearrange-
ment events (T1 events) relax the stress on neighboring
droplets. At higher area fractions, this stress relaxation
has a quadrupolar character, confirming theoretical pre-
dictions [13]. One implication is that T1 events increase
the stress felt by nearby droplets along certain directions,
and subsequent T1 events are more likely to occur in
those regions. This is indeed true in our experiments
(data not shown). Due to a change in the character of
particle motion at lower area fractions, the stress redis-
tribution becomes less quadrupolar and more isotropic
as the jamming point φc is approached from above. This
is reflects the spatial heterogeneity in these systems as
φ → φc [2]. Our observations provide direct evidence
that on a droplet scale, rearrangements in one location
influence stresses felt in other locations, and that the
area fraction determines the details of how this influence
is propagated.
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and W. Losert, Rev. of Sci. Instrum. 83, 011301 (2012).
[24] A. Le Bouil, A. Amon, S. McNamara, and J. Crassous,

Phys. Rev. Lett. 112, 246001 (2014).
[25] K. E. Jensen, D. A. Weitz, and F. Spaepen, Phys. Rev.

E 90, 042305 (2014).
[26] B. Utter and R. P. Behringer, Phys. Rev. Lett. 100,

208302 (2008).
[27] D. Howell, R. P. Behringer, and C. Veje, Phys. Rev.

Lett. 82, 5241 (1999).
[28] K. W. Desmond, P. J. Young, D. Chen, and E. R. Weeks,

Soft Matter 9, 3424 (2013).
[29] R. Shah, H. Shum, A. Rowat, D. Lee, J. Agresti,

A. Utada, L. Chu, J. Kim, A. Fernandez-Nieves, and
C. Martinez, Materials Today 11, 18 (2008).

[30] J. C. Crocker and D. G. Grier, J. Colloid Interface Sci.
179, 298 (1996).

[31] K. W. Desmond, Structure, Dynamics, and Forces of
Jammed Systems, Ph.D. thesis, Emory University (2012).

[32] F. da Cruz, S. Emam, M. Prochnow, J. N. Roux, and
F. Chevoir, Phys. Rev. E 72, 021309 (2005).

[33] M. P. Allen and D. J. Tildesley, Computer Simulation of
Liquids (Oxford University Press, USA, 1989).

[34] M. Lundberg, K. Krishan, N. Xu, C. S. O’Hern, and
M. Dennin, Phys. Rev. E 77, 041505 (2008).

[35] D. J. Durian, Phys. Rev. E 55, 1739 (1997).
[36] J. D. Eshelby, Proc. Royal Soc. London. Ser. A 241, 376

(1957).
[37] J. D. Eshelby, Proc. Royal Soc. London. Ser. A 252, 561

(1959).
[38] W. G. Ellenbroek, E. Somfai, M. van Hecke, and W. van

Saarloos, Phys. Rev. Lett. 97, 258001 (2006).


