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Transport in three dimensional topological insulators relies on the existence of a spin-momentum
locked surface state that encloses the insulating bulk. In this work we show how in a topological
insulator p-n junction, a magnetic field turns this surface state into an electronic Mach-Zehnder
interferometer. Transmission of the junction can tuned form zero to unity, resulting in virtually
perfect visibility of the interference pattern, and the reflected and transmitted currents carry oppo-
site spin polarization so that the junction also acts as a spin filter. Our setup therefore realizes a
novel and highly tunable spintronic device where the effects of spin-momentum locking in TI surface
states can be probed directly in a transport experiment.

Three dimensional topological insulators were discov-
ered shortly after their prediction, by photoemission ex-
periments demonstrating the existence of a single Dirac
cone in their energy spectrum [1, 2]. In transport, the
study of their properties has proved to be very challeng-
ing, mainly due to bulk carriers obscuring effects coming
from the surface states, and limited control over chemical
potentials. Recently, remarkable progress has been made
both in growth of new types of topological insulator ma-
terials as well as measuring techniques: a new generation
of compounds and alloys exhibit a low contribution to
transport coming from bulk carriers, and improvements
have been made in gating methods [3–6]. Hence, efforts
can now be focused more on exploring exotic phenomena.

Dirac fermions confined to the surface of topological in-
sulators are expected to exhibit remarkable effects: Chi-
ral modes, topologically protected perfectly transmitting
modes, as well as perfect Andreev reflection, are only
some of the phenomena predicted to appear in trans-
port [7–14]. In the presence of strong magnetic fields,
Shubnikov de Haas oscillations and a quantum Hall ef-
fect typical to Dirac particles have already been demon-
strated [15–21]. However, features unique to topological
insulators such as the spin structure of the quantum Hall
edge modes are yet to be observed. Here, we predict that
a simple and rather common setup could pin-point these
properties in the form of an interferometric measurement
in a device made only from a film of TI, a top gate, and
an external magnetic field. We show that a thin film of a
topological insulator in the quantum Hall regime, partly
covered by a gate, forms a p-n junction which in the pres-
ence of an in-plane flux functions as a condensed matter
realization of a Mach-Zehnder interferometer. The os-
cillations in the conductance of this device are directly
linked to the spin texture of the quantum Hall chiral
modes, a manifestation of the spin-momentum locking
property of TI surface states.

In addition to providing a testbed to reveal the unique
transport properties of 3DTI, the structure we present
here makes a spintronic device with a very high level of
spin control. The two-path interferometer takes as inputs
one dimensional currents that are naturally spin polar-

ized without the aid of ferromagnetic leads, and generates
as outputs two spin polarized channels that are spatially
separated. The interference loop is controllable with the
application of an in-plane flux, which determines how
much spin current is carried in each output channel. In
a two terminal geometry, the behavior of the conduc-
tance of this device is similar to that of the spin-FET,
proposed by Datta and Das over two decades ago [22].
But our device functions more generally as a spin filter,
granting separate access to the different spin orientations
produced as outputs, and allowing to tune their relative
amplitudes.

The idea of using a p-n junction to look for novel phys-
ical effects in Dirac materials traces back to the remark-
able experiments done in graphene [23–25], where the in-
terplay between Klein tunneling and the Quantum Hall
Effect is responsible for characteristic transport signa-
tures evidencing Dirac fermions [26, 27]. A p-n junction
has also been studied theoretically before in TI [28], yet
the effect we predict here was overlooked. When design-
ing transport devices made out of a film of a 3DTI, a sin-
gle flat surface is generally assumed for simplicity, while
the effect described here requires considering the full 2D
surface of a 3D bulk material. While superficially similar
to “one quarter of” graphene, the surface state of TI is
fundamentally different in that it lives on a closed sur-
face with no edges, embedded in three dimensional space.
The usual edge state picture of the Quantum Hall Effect
is thus replaced by the more general principle that chiral
modes appear between regions with different local Hall
conductance. This is the main reason our design is unique
to topological insulators and cannot be implemented in
planar geometries.

Consider a thin film of a 3DTI in the presence of a
strong perpendicular magnetic field, as shown in Fig.
1(a), so that the the top and the bottom surfaces are
in the Quantum Hall regime with well developed Landau
Levels. Since the surface state is a single Dirac fermion,
when the n = 0 Landau Level is filled, the top surface has
Hall conductance σxy = 1/2 in units of e2/h. The bottom
surface, penetrated by a magnetic field opposite in direc-
tion with respect to the surface normal, has σxy = −1/2
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FIG. 1. a) A film of a 3DTI of height h and width W is
placed under a strong perpendicular magnetic field B⊥ and
a parallel field B‖. b) A 3DTI p-n junction in a magnetic
field: a bottom gate shifts the chemical potential of the right
side of the sample below the Dirac point, reversing σxy for
the top and the bottom surfaces in this side. The film is then
traversed by two additional chiral modes forming a closed
loop around the bulk. The parallel field threads a flux φ
through the loop. The energy spectrum of the surface states
is plotted for an infinite film in the x direction, with B⊥ = 2
T, h = 30 nm, W = 300 nm. The green and red regions
mark the chemical potential of the two sides of the junction.
The gray boxes are contacts for the proposed two terminal
measurement.

[7]. This implies that the side surfaces, which are inter-
faces between regions where σxy changes by one unit, will
carry a single chiral mode, similar to the one appearing
in a quantum Hall state with σxy = 1 in a strictly 2D
system.

To form a p-n junction, imagine gating half of the sam-
ple so that the chemical potential in the gated region
resides between the n = 0 and n = −1 Landau levels.
This flips the signs of the Hall conductances of the top
and bottom surfaces, and as a result, the chirality of the
current flowing on the side surfaces in the gated region is
reversed. At the p-n junction, currents of opposite chi-
rality meet at a vertex v1 on one side surface, and part
from a vertex v2 on the other side. In addition, since the
Hall conductance now changes sign not only from top
to bottom, but also from right to left, two more chiral
modes co-propagating along the junction connect v1 and
v2, one running on the top and one on the bottom sur-
face. Therefore, the p-n junction realizes a network of
chiral modes with the structure of an interferometer, as
shown in fig. Fig. 1(b). Crucially, because the modes
traversing the film and forming the loop live in different
surfaces, the loop encloses a finite area and an in-plane
magnetic field can be used to thread flux through it, al-
lowing the study of interference effects.
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FIG. 2. Spin densities of the chiral modes of a 3DTI slab
in a magnetic field, as a function of θ, a coordinate running
along the circumference of the slab. Spin vectors are described
in the tangent basis ~s = (sx, sθ, s⊥) which rotates along θ,
keeping s⊥ aligned with the surface normal.

The key property of this network is that the chiral
modes forming it have characteristic spin polarizations
due to spin-momentum locking. To see this explicitly, we
model our system as a Dirac fermion living on the sur-
face of a rectangular slab placed in magnetic field [29], as
in Fig. 1(a), and obtain the wave functions numerically.
We then use these wave functions to calculated the ex-
pectation value of the different spin operators on the side
surfaces, as well as the two terminal conductance across
the p-n junction.

For the purpose of the numerical calculation, the sur-
face is parametrized with two coordinates (x, θ), where
x runs along the slab (perpendicular to the p-n junc-
tion) and θ ∈ [0, 2π] encircles the slab. Spin vectors are
described using the basis ~s = (sx, sθ, s⊥) which rotates
when moving along θ, keeping s⊥ aligned with the surface
normal. The Hamiltonian describing the Dirac fermion
surface state of a 3DTI slab of height h and width W in
a constant magnetic field is

H = −ivF ŝθ(∂x + ieAx) + ivF ŝx
2π

P
(∂θ + i

φ

2π
)− µ (1)

with P the perimeter P = 2h + 2W , vF the Fermi ve-
locity of the particles, µ the chemical potential, φ =
2πWhB‖/(h/e) the flux trough the film cross section
and ŝi are the spin operators. The boundary conditions
in the θ direction are anti-periodic [11]. In this coor-
dinate system, the magnetic field is ±B⊥ for the top
and bottom surfaces and zero for the sides, and is re-
produced with a vector potential Ax = Ax(θ) as the one
given in ref. [29]. The numerical diagonalization of this
Hamiltonian is done by expanding the eigenfunctions in
angular momentum states ψk(s) =

∑
n e

inθχk,n with n
half-integer, as described in detail in ref. [29]. The en-
ergy spectrum obtained is shown in Fig. 1 for B⊥ = 2T,
h = 30nm, W = 300nm. The spin polarization of the low-
est Landau level side surface modes is obtained from the
corresponding eigenstate ψk(θ) by calculating the expec-

tation values si(θ) =
〈
ψ†k|ŝi|ψk

〉
, and is shown on Fig. 3.

The expectation value of the different spin components
is plotted as a function of θ in Fig. 3(b). As the fig-
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ure shows, the average spin density on the side surfaces
amounts to a net polarization perpendicular to the di-
rection of the current flow. Changing the chirality of the
current, either by flipping the direction of the field, or
by changing the sign of the chemical potential, also re-
verses the direction of spin polarization. Hence, the chi-
ral modes propagating along the side surfaces of the p-n
junction carry opposite spin on opposite sides of the junc-
tion. Note that the effective spin always lies in the sur-
face plane, and points from the region with σxy = −1/2
to the one with σxy = 1/2, and the same is correct for
the modes traversing the junction.

The chiral modes traversing the sample on top and
bottom surfaces have a different spin polarization than
those at the side surfaces, and this is fundamental in
generating interference effects in transport through the
p-n junction. At the vertex v1, incoming modes have
±θ polarization but outgoing modes have ±x polariza-
tion. Choosing specific spin operators for concreteness as
(ŝx, ŝθ, ŝ⊥) = (σx, σz, σy), an electron entering the vertex
must be scattered into the outgoing modes according to
the basis change

| ↑〉z =
1√
2
| ↑〉x +

1√
2
| ↓〉x (2)

| ↓〉z =
1√
2
| ↑〉x −

1√
2
| ↓〉x (3)

which means that the vertex v1 acts as a beam splitter.
The same occurs at the vertex v2, with x and z inter-
changed. A schematic of this interferometer is shown in
Fig. 3(c). Therefore, our setup has the exact structure
of a two path interferometer, sketched in Fig. 3(d). The
path of an electron emitted from a source contact at the
left side splits into two paths at v1, propagating across
the sample, and recombining at v2. Flux through the
loop introduces a relative phase between the two arms of
the interferometer. When this phase is zero, the electron
recombines at v2 with its spin orientation unchanged and
is perfectly reflected, while a phase of π causes the incom-
ing spin to be completely flipped so that perfect trans-
mission occurs. Intermediate phases will result in an in-
termediate spin rotation and therefore, partial transmis-
sion. This spin-based interference effect can be directly
observed in two-terminal transport.

To make our above statements quantitative, we com-
pute the two terminal conductance across the p-n junc-
tion from the scattering matrix S of the device

S =

(
r t′

t r′

)
(4)

with r, t, r′, t′ representing the reflection and transmis-
sion of incoming modes from a scattering region. The
two terminal conductance from source to drain is simply
calculated from the transmission matrix t and is given by

G =
e2

h
|t|2 (5)

FIG. 3. Left: A schematic of the interferometer and the effec-
tive spin states on each arm. The gray boxes on the sides are
contacts, the light gray region in the middle is the scattering
region: the vertices on the side surfaces labeled v1, v2 scatter
the incoming spin states into rotated spin states on the top
and bottom surfaces encircling the flux. Right: The original
optical Mach Zehnder interferometer. The empty rectangles
are the beam splitters, solid ones are fully reflecting mirrors.

Denoting the two incoming modes as |ψ〉Lin = | ↑〉z and
|ψ〉Rin = | ↓〉z (see Fig. 3) the scattering matrix of the first
vertex

Sv1 = 1/
√

2(σx + σz) (6)

accounts for the scattering of the incoming modes onto
|ψ〉top and |ψ〉bottom, polarized along the x direction. The
transfer matrix describing the propagation of the spinors
|ψ〉top and |ψ〉bottom along the arms of the interferometer
is diagonal, and contains two contributions. The first is
a dynamical phase, eikW , where k is the momentum of
the particles and W the width of the film. The second is
a phase contributed by the flux enclosed in the loop, φ.
It is therefore given by

T = eikW+iφ/2eiφσz/2 (7)

Finally, from symmetry, the scattering matrix describing
the second vertex v2 is Sv2 = Sv1. Therefore the total
scattering matrix for the interference loop is the product
of all three matrices

S = Sv1TSv2 = eikW+iφ/2eiφσx/2 (8)

From this we find the simple expression

G =
e2

h
sin2 φ/2 (9)

As a function of flux through the loop, the conductance
oscillates between zero and e2/h.

We pause here to appreciate the fact that this interfer-
ometer has perfect visibility: the visibility of an interfer-
ometer is defined as V = (Imax − Imin)/(Imax + Imin),
where Imax(min) are the maximum (minimum) of the cur-
rent measured at the drain. Since the two beam splitters
should split the current in half, we expect this interfer-
ometer to be very close to having unit visibility.

Equation (9) stems from the effective one dimensional
model deduced from the spin densities we have calculated
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numerically. In order to confirm the validity of this re-
sult, we perform an exact numerical calculation of the
conductance of the p-n junction on the slab, again using
the scatting matrix approach. A p-n junction is mod-
eled by a chemical potential that changes sign at x = 0,
µ(x) = µLθ(x) + µRθ(−x), with µL > 0 and µR < 0.
The Hamiltonian is solved in the left and right sides with
chemical potentials µL > 0 and µR < 0 respectively, and
the wavefunctions are matched at the interface to obtain
the transmission matrix, from which the conductance is
calculated in a similar fashion to equation (5). As in
ref. [29], this calculation involves both propagating and
evanescent modes at the Fermi level [30, 31]. We de-

fine ψL−α and ψL+α with α = 1, . . . , Nprop and ψL,evα′ with
α′ = 1, . . . , Nev to be the incoming, outgoing, and evanes-
cent modes at x < 0. Similarly, ψR−α , ψR+

α ,ψR,evα′ are the
corresponding modes at x > 0. The matching condition
takes the form

ψL−α +

Nprop,L∑
β=1

rαβψ
L+
β +

Nev,L∑
α′=1

cαα′ψL,evα′ (10)

=

Nprop,R∑
β=1

tαβψ
R+
β +

Nev,R∑
α′=1

c′αα′ψ
R,ev
α′ (11)

where rαβ and tαβ are the elements of the reflection and
transmission matrices from which the conductance can
be calculated, G = e2/htr(t†t).

Figure 4 shows the conductance as a function of flux
through the loop and chemical potential or perpendicular
field. As it shows, once Landau levels are well established
and the two sides are brought into the lowest Landau
level regime, the conductance oscillates with unit ampli-
tude and a period of one flux quantum. This confirms the
prediction of the effective model given by equation (9),
and in particular the fact that the the interference pat-
tern has unit visibility within the Dirac fermion model.

The range of chemical potentials where the system is
in the lowest Landau level is determined by the height h
and the magnetic length `B (see Ref.[33]), and for the pa-
rameters discussed is around 20−30 meV, see Fig. 1. Be-
yond this range, additional chiral and non-chiral modes
contribute to transport and the interference pattern is in
general degraded (see figure 4 at a high chemical poten-
tial or low fields). h should also be kept larger than the
threshold where the original Dirac fermions in top and
bottom surfaces start to hybridize. In current samples
setting h > 10 nm is sufficient [32]. We also note that
deviation from unit visibility may be introduced due to
hexagonal warping [34] and Zeeman coupling. The first
becomes important at energies larger than E∗ ≈ 230
meV [34], and the second affects states only below the
Zeeman energy, which at B⊥ = 2 T and g as large as 20 is
only EZ = µBgB⊥/2 ≈ 1.1 meV. For the range of µ con-
sidered both effects can thus be safely neglected. For the
same reason, a small offset of the chemical potential be-

FIG. 4. Conductance of a p-n junction as a function of flux,
chemical potential, and magnetic field. Left: Conductance as
a function of φ and µL, for a fixed µR = −15 meV and B⊥ = 2
T. Right: Conductance as a function of φ and B⊥ for fixed
µR = −µL = 15 meV. In both plots, once fully developed
Landau levels are formed, and the chemical potential is in the
lowest Landau level, the conductance follows equation (9).

tween top and bottom surfaces bears no consequence for
this effect. Further corrections may arise from contact re-
sistance in a two terminal measurement, multiplying the
amplitude of oscillations by a non-universal factor. Such
contributions could be eliminated, for example, by us-
ing multi-terminal setups. Lastly, the sample dimensions
should not exceed the coherence length of chiral modes
in 3DTI. While this quantity is currently unknown, it
has been demonstrated in 2DEGs that it can reach ten
of microns [35], so for the length scales described in this
paper moderate disorder is not expected to affect our pre-
dictions. Coherent propagation may also be affected by
thermal broadening of the momentum states, δk, which
should satisfy δkW � 1, or kBT � vF /W . For the
width we consider we find that the temperature should
be kept lower than 1 K.

In summary, we have demonstrated that a p-n junc-
tion formed from a three dimensional topological insula-
tor in the presence of a strong external perpendicular field
and an in-plane flux can be turned into an interferometer
which acts as a spin filter. The observation of conduc-
tance oscillations in this setup should serve as a clear-cut
transport signature of spin momentum locking in 3DTI,
and of the unusual spin texture of chiral modes in the
quantum Hall regime. It is interesting to note the re-
lation of our proposal with the electronic Mach-Zehnder
interferometer realized in the beautiful experiment by Ji
et al. [36] using Quantum Hall edge states in a two di-
mensional electron gas. There, the effect seen is purely
charge-based and lacks the spin-filter aspect discussed
here, which is unique to TI.

The oscillations in the two terminal conductance of our
setup can also be thought of as an analog effect to the one
appearing in the Datta-Das spin-FET [22]. There, the
conductance between two ferromagnetic contacts can be
changed by inducing a spin precession in the region that
separates them through changing the spin-orbit coupling
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with a gate voltage. In our setup, the input channels are
naturally spin polarized so that normal contacts can be
used rather than ferromagnetic leads, and the spin pre-
cession is induced by the in-plane flux. Compared to the
spin-FET, our device has the outstanding advantage of
spin-filtering, by physically separating the different spin
components on output, which could be accessed using an
appropriate contact configuration.
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