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In order to understand the conditions which lead a highly magnetized, relativistic plasma to
become unstable, and in such cases how the plasma evolves, we study a prototypical class of magne-
tostatic equilibria where the magnetic field satisfies ∇×B = αB, where α is spatially uniform, on
a periodic domain. Using numerical solutions we show that generic examples of such equilibria are
unstable to ideal modes (including incompressible ones) which are marked by exponential growth in
the linear phase. We characterize the unstable mode, showing how it can be understood in terms of
merging magnetic and current structures, and explicitly demonstrate its instability using the energy
principle. Following the nonlinear evolution of these solutions, we find that they rapidly develop
regions with relativistic velocities and electric fields of comparable magnitude to the magnetic field,
liberating magnetic energy on dynamical timescales and eventually settling into a configuration
with the largest allowable wavelength. These properties make such solutions a promising setting for
exploring the mechanisms behind extreme cosmic sources of gamma rays.

Introduction.—Magnetic stability is a fundamental
question in a range of fields from laboratory plasma
physics, where it influences the viability of fusion de-
vices [1]; to space physics, where it controls the struc-
ture of magnetic fields within stars and planets [2]. In
high-energy astrophysics, the spontaneous release of en-
ergy associated with transitions between magnetic equi-
librium states is of particular importance to understand-
ing the dramatic gamma-ray activities from pulsar wind
nebulae [3, 4], magnetars [5–8], relativistic jets associated
with active galactic nuclei [9–12], and gamma-ray bursts.
These diverse sources exhibit powerful gamma-ray flares
on timescales short compared with their light-crossing
times [7, 11, 12], and seem to require that electrons and
positrons be accelerated throughout extended regions, to
energies as high as several PeV [13, 14]. The most dra-
matic variations are likely produced in the relativistic
electromagnetic outflows away from the central engine
(neutron stars or black holes), and a mechanism is press-
ingly needed to explain the rapid, volumetric conversion
of magnetic energy into high energy particles and radia-
tion. Here, we consider whether such a process may be
triggered by magnetic instability in the outflow. These
outflows may initially accelerate, so that they cannot be
crossed by hydromagnetic waves in an outflow timescale.
However, they will eventually be decelerated when their
momentum flux decreases to that of the external medium,
bringing disconnected regions back into causal contact
where they are likely to be unstable [15] .

To understand the conditions under which a plasma
becomes unstable, and to follow its subsequent nonlinear
evolution in an idealized setting, we focus on a model
class of force-free equilibria, which we find evolves in a
manner that is both surprising on formal grounds, and
highly suggestive of the behavior of the most dramatic
cosmic sources. Force-free solutions, where the Lorentz
force vanishes, are an excellent approximation for highly
conducting and strongly magnetized plasmas, where the

plasma inertia and pressure is sub-dominant to the mag-
netic field, and have been used extensively across differ-
ent fields. A particularly important class of force-free
equilibria that are conjectured to arise naturally from
magnetic relaxation are the so called Taylor states, which
satisfy the Beltrami property: ∇ × B = αB where α
is a constant [16]. These solutions have played an im-
portant role not only in laboratory plasma physics [17],
but also in solar physics [18–20], astrophysics [21], and
beyond [22]. In this work we focus on space-periodic
equilibria as a simple, computationally tractable setting
free of the effect of confining boundaries (as in extended
outflows). Though there is a rich literature studying such
solutions [16, 23–26], important facts regarding their sta-
bility have not been appreciated. Focusing on a prototyp-
ical example, the “ABC” solutions [27] (defined below),
in [25] it was claimed that such solutions are stable to in-
compressible perturbations (see also [26]). Here we show
that, in fact, generic periodic Beltrami magnetic fields
are linearly unstable, including to incompressible defor-
mations. The only exceptions we find are special cases
lacking magnetic curvature, and those in the fundamen-
tal mode or ground state, having the lowest magnetic
energy compatible with conservation of magnetic helic-
ity HM =

∫

A ·BdV (where A is the magnetic vector
potential). The instability we find is ideal, in contrast
to previous studies of dissipative effects [28]. We find
that in the nonlinear evolution, magnetic energy is in-
deed liberated rapidly, giving rise to relativistic veloci-
ties and electric fields of comparable magnitude to the
magnetic fields on dynamical timescales, and eventually
allowing the system to relax to its ground state. These
solutions are therefore a simple, but promising setting
to explore the mechanisms underlying extreme cosmic
sources of gamma rays.

In what follows, we present simulation results show-
ing the linear-regime instability of a range of magneto-
static equilibria, and then illustrate the properties of the
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dominant unstable mode in some example cases, inde-
pendently confirming the growth rate using the energy
principle. We then compare the results found using var-
ious degrees of magnetization, discuss the nonlinear evo-
lution of the instability, and conclude. We use units with
c = 1 throughout.
Methodology.—The equilibrium magnetic fields we

study are exemplified by the three-parameter “ABC”
field [27, 29] given by

B
E =

(

B3 cosαz −B2 sinαy, (1)

B1 cosαx −B3 sinαz, B2 cosαy −B1 sinαx
)

.

We use some particular examples of this equilibrium solu-
tion for illustrative purposes, but also consider the more
general class of Beltrami fields [30] B = αΨ + ∇ × Ψ

where the potential field Ψ is any solenoidal vector field
satisfying the vector Helmholtz equation∇2

Ψ+α2
Ψ = 0,

so that Ψ comprises only the Fourier harmonics whose
wave-vector k has magnitude α. These more general con-
figurations are constructed by choosing random vector
amplitudes for the admissible harmonics. Our compu-
tational domain is the periodic cube of length L = 2π
(though we restore L in some places for clarity).
We simulate a perfectly conducting, magnetized

fluid and consider cases with different finite values
of the volume-averaged magnetization parameter σ :=
〈B2/4πρh〉 where ρh is the fluid enthalpy (treated us-
ing the ideal relativistic magnetohydrodynamic equations
and the code in [31]), as well as the limiting case of a com-
pletely magnetically dominated plasma, σ = ∞ (treated
by force free electrodynamics [32–34]). See supplemental

material [35] for details.
Instability in the Linear Regime.—For this class of

magnetic equilibria, we find generic solutions with α2 > 1
to be unstable to linear ideal perturbations that are
characterized by exponential growth of the electric field.
Fig. 1 illustrates this for a case with α2 = 11. (Here we
present results from σ = ∞ simulations, and in a later
section we compare these to finite magnetization cases.)
The magnitude of the growing solution is proportional to
the initial perturbation[40], consistent with a linear insta-
bility. The growth rate of, e.g., the electric field energy
is converging to γ ≈ 4.0α/L with increased resolution,
evidence that the instability is not due to numerical/non-
ideal effects.
Other equilibrium solutions exhibit similar exponen-

tially growing solutions, as shown for some example cases
in Fig. 2. This holds for wavelengths larger than the fun-
damental mode for the domain, α2 = 1, which is known
to be stable [25, 26]. The growth rate of the instability
is also roughly proportional to α, though there is depen-
dence on the particular realization used.
The Dominant Unstable Mode.—In order to illustrate

the nature of the instability, we focus on a simple type of
α = 2 equilibrium solution given by Eq. 1. We illustrate
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FIG. 1. Results from simulations with α2 = 11. Top: The
growth of the electric field energy UE, normalized by its ini-
tial value, for three different values of the initial perturba-
tion. Middle: The growth in UE for three different resolu-
tions, along with an exponential fit. The difference between
the best fit exponent for the high resolution, and the Richard-
son extrapolated value using all three resolutions, is ≈ 0.1%,
the extrapolation being consistent with between first and
second-order convergence. The bottom panel illustrates the
conservation of total energy U for three different resolutions.
Though initially higher-order when the equilibrium-solution
truncation error dominates, the convergence eventually drops
to first-order, presumably because (as discussed below) the
unstable solution has non-smooth features. Conservation of
magnetic helicity is similar.
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FIG. 2. The growth in electric field energy for various values
of α2 and three different realizations for α2 = 11. Time has
been shifted so that all the curves have an abscissa of 0 at the
ordinate value of 10−6, and the time axis has been scaled by
α which gives the different examples roughly the same slope.
The α2 = 1 simulation does not exhibit exponential growth,
and has been scaled up by an overall factor.
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this solution for three different choices of coefficients in
Fig. 3. As discussed in [29] for the mathematically equiv-
alent Euler flow, these solutions have a rich structure.
The (B1, B2, B3) = (1, 1, 0) case consists of “vortices:”
regions of helical field (and current) lines circling a cen-
tral axis. The (B1, B2, B3) = (1, 1/2, 0) case has vor-
tices as well as “shear layers:” wavy field lines that begin
and end on opposite sides of the domain. In addition to
these two cases with z-translational symmetry, we also
show a more generic case where all three coefficients are
nonzero (and that like the second case, has no places
where B

E = 0).
In Fig. 3 we also show the corresponding velocity field

v = E×B
E/|BE|2 (which will be proportional to the dis-

placement ξ for an eigenmode) characterizing the dom-
inant instability arising in each case. This is calculated
from a numerical snapshot after the instability has grown
by roughly 10 orders of magnitude — seeded in this case
just by truncation error — but is still in the linear regime
(|E| ∼ 10−4|BE |). The velocity field acts to bring to-
gether vortices, or current channels, circulating in the
same direction in order to move towards a larger wave-
length, lower magnetic energy configuration. The nonlin-
ear evolution is characterized by the merging of magnetic
vortices and can thus be related to the coalescence insta-
bility of magnetic islands [41]. We can also see that the
velocity field appears to have non-smooth features, rem-
iniscent of spontaneous current sheets [42], that occur at
the separatrices dividing the vortices and shear layers.
Though the generic case lacks z-translational symmetry,
it appears qualitatively similar to the second case.
From the (B1, B2, B3) = (1, 1, 0) to the (1, 1/2, 0) case,

the growth rate of the instability decreases by a factor of
≈ 1.9 with the addition of the shear layers in the equilib-
rium solution. In fact, the growth rate decreases mono-
tonically with B2, and as B2 → 0 and the vortices shrink
to zero volume, the growth rate of the instability also
goes to zero. In fact, it can be shown (see [35]) that the
single mode solutions are all stable, including those at
short wavelengths.

For the generic case where the three coefficients are
nonzero, we directly confirm that the instability is linear
and ideal by using the energy principle [43]. This implies
that an equilibrium solution B

E satisfying the Beltrami
property is unstable to a displacement ξ if

ω2 :=

∫ [

|δB|2 − α(ξ ×B
E) · δB)

]

dV
∫

|BE |2|ξ|2dV
< 0, (2)

where δB := ∇×(ξ×B
E), and that the instability should

grow at least as fast as |ω|. Computing this quantity
using finite differences, with the numerical velocity field,
gives a value of |ω|L ≈ 2.4, near the growth rate of 2.6
measured for the electric field in the simulation.
Although the unstable displacement from the simu-

lations has both non-smooth and compressible (
∫

|∇ ·

v|dV ≈ 0.15
∫

|∇ × v|dV ) features, these are not nec-
essary for instability. For example, by applying a low-
pass filter to the Fourier harmonics of ξ one can con-
struct an ideal perturbation that has no power at scales
|k| > 29, and yet gives a value of |ω|L ≈ 2.3 upon eval-
uating Eq. (2) algebraically in k-space. Furthermore, we
have also explicitly constructed (see [35]) analytical ex-
amples of smooth and incompressible displacements that
destabilize particular Beltrami solutions, which are coun-
terexamples to the claims in [25].

Magnetization comparison and nonlinear evolution.—
The same qualitative behavior is observed when the
plasma is evolved with different magnetization param-
eters. Fig. 4 shows the evolution of the kinetic and mag-
netic energy UB for different parameters σ values, in-
cluding the limiting case of σ = ∞. The lower inset of
Fig. 4 shows that the growth rate of the unstable mode
increases monotonically with increasing σ and is roughly
proportional to the Alfvén speed vA =

√

σ/(1 + σ).

In both finite and infinite magnetization cases, expo-
nential growth of the unstable displacement persists until
its velocity |v| approaches the Alfvén speed vA (near the
speed of light for large σ) and higher-order evolutionary
terms dominate. Following the turbulent state, the sys-
tem settles into a lower energy equilibrium. Somewhat
surprisingly, we do not observe direct evolution into the
lowest energy (α = 1) state for all cases. For example,
the α2 = 11 state in Fig. 4 first transitions into a config-
uration with ≈ 97% of its spectral energy in modes with
k
2 = 3, where it remains for about ten Alfvén crossing

times, before making a second transition into the ground
state, where 99% of its energy in k

2 = 1 modes. The
lifetime of the intermediate state may be related to the
fact that ≈ 88% of the energy is in a single k2 = 3 mode.

During the nonlinear evolution, regions develop where
|E| is comparable, and even exceeds |B|. Since the hyper-
bolicity of the equations breaks down for σ = ∞ when
this happens, to evolve further we handle such regions
with an ad-hoc prescription where we simply reduce the
electric-field magnitude to equal that of the magnetic
field, leading to a reduction of energy. The finite σ cases
do not suffer from this problem, and our scheme explicitly
conserves total energy, but permits conversion of mag-
netic or kinetic energy into internal energy, especially at
shocks or places where the magnetic field is nearly dis-
continuous. Encouragingly, we still find consistency be-
tween these different (and somewhat arbitrary) types of
energy dissipation in the non-linear regime. For example,
as shown in Fig. 4, we find the same energy levels associ-
ated with the intermediate and final magnetic equilibria.
This is consistent with conservation of magnetic helicity.
Since the Beltrami fields have B = αA, their helicity is
2UB/α, and the ratio of magnetic energy in the αi and
αf equilibria is simply αf/αi. Accordingly, we do not ex-
pect the dissipation mechanism to have much influence
on the energy of the final state if helicity is preserved.
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FIG. 3. Streamlines of a magnetic field equilibrium solution B
E given by Eq. 1 with α = 2 and various coefficients (top), and the

corresponding velocity field v = E×B
E/|BE |2 of the unstable mode arising from the simulations (bottom) in the z = 0 plane.

The equilibrium solutions, from left to right, correspond to (B1, B2, B3) = (1, 1, 0), (1, 1/2, 0), and ≈ (−0.814, 0.533, 0.232),
respectively. The color indicates the perpendicular vector component with red and blue representing, respectively, out of the
page and into the page. The thickness of the streamline is proportional to the vector magnitude. The black lines indicate the
location of the separatrices in the equilibrium solutions.

(For the simulations shown in Fig. 4, HM is constant to
∼ 0.1%.) But understanding the details of the energy
dissipation will require better physical modeling.

Conclusions.—We studied periodic Beltrami magnetic
fields and found that they were unstable to ideal modes.
Though we focused on the relativistic case, since the in-
stability is linear in velocity, it also applies to the nonrel-
ativistic setting. This contrasts with [25] — where it was
concluded that such solutions are linearly stable against
incompressible perturbations — and suggests that the re-
laxation of a complex magnetic field will not terminate
at a small wavelength equilibrium, but instead undergo
a so-called inverse helicity cascade where magnetic en-
ergy goes to the largest available scale [44–47]. There
are known examples of unstable cylindrically-symmetric
Beltrami solutions [48], and studying a broader class of
geometries would be interesting follow-up work.

For highly magnetized, relativistic plasma, the insta-
bility gives rise to regions where the electric field mag-
nitude is comparable to the magnetic field on dynamical
timescales. In extreme cosmic sources of gamma rays,
where such configurations may be relevant, these would
be likely sites of particle acceleration and photon emis-
sion. Understanding the details of this, including the role
of magnetic reconnection [49–51] and turbulence [52] in
ultimately dissipating energy, and determining the na-
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ture of the acceleration mechanism [53–55], will require
kinetic simulations incorporating radiative losses, some-
thing we plan for future work.
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