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We show how to use two-mode squeezed light to exponentially enhance cavity-based dispersive
qubit measurement. Our scheme enables true Heisenberg-limited scaling of the measurement, and
crucially, is not restricted to small dispersive couplings or unrealistically long measurement times.
It involves coupling a qubit dispersively to two cavities, and making use of a symmetry in the
dynamics of joint cavity quadratures (a so-called quantum-mechanics-free subsystem, QMFS). We
discuss the basic scaling of the scheme and its robustness against imperfections, as well as a realistic
implementation in circuit quantum electrodynamics.
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Introduction– Research in quantum metrology has es-
tablished that squeezed light and entanglement are key
resources needed to approach truly fundamental quan-
tum bounds on measurement sensitivity [1]. Perhaps the
best known application is interferometry: by injecting
squeezed light into the dark port of an interferometer, one
dramatically enhances its sensitivity to small phase shifts
[2, 3], reducing the imprecision below the shot-noise limit.
Many of these ideas for squeezing-enhanced measure-
ment were first motivated by gravitational wave detection
[4–6], and have recently been implemented in current-
generation detectors [7, 8]. More generally, squeezed light
has been used to enhance the measurement sensitivity in
optomechanics [9] and even biology [10].

Ultra-sensitive detection is also essential for quantum
information processing where fast, high-fidelity qubit
readout is required to achieve fault-tolerant quantum
computation [11]. A ubiquitous yet powerful approach
is dispersive readout, where a qubit couples to a cav-
ity such that the cavity frequency depends on the qubit
state, see e.g. [12]. The readout consists of driving the
initially empty cavity with a coherent tone, resulting in
a qubit-state dependent cavity field which is displaced
in phase space from the origin [see Fig. 1(a)]. High-
fidelity readout can then be obtained by measuring the
output field quadratures. This is the standard approach
used in state-of-the-art experiments with superconduct-
ing qubits, e.g. [13–15].

As with interferometry, one might expect that dis-
persive qubit measurement could be enhanced by using
squeezed light. The most obvious approach would be to
squeeze the phase quadrature of the incident light [i.e. Y
in Fig. 1(b)], thus reducing the overlap between the two
pointer states. As discussed recently in Ref. 16 the situ-
ation is not so simple, as the dispersive interaction will
lead to a qubit-dependent rotation of the squeezing axis.
Unlike standard interferometry, this rotation is a prob-
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FIG. 1. Phase-space representation of dispersive qubit read-
out for different input states: (a) coherent state, (b) single-
mode phase-squeezed state, (c) amplitude-squeezed state,
(d) two-mode squeezed state in the QMFS (X−, Y+). The
purple dashed lines represent the input state and the blobs
represent the output fields. The input state is displaced along
the X-axis and the signal is encoded in the quadrature corre-
sponding to the Y -axis with homodyne detection; as depicted
in the leftmost panel, the readout error corresponds to the
overlap of the two marginals. Dispersive interaction with the
qubit rotates the output field by the angle ϕqb for the ground
state |0〉 (in blue) and −ϕqb for the excited state |1〉 (in red).
Ideally, one wants the output state to be phase squeezed re-
gardless of qubit state [dotted “desiderata” states in (b)]; this
is not possible when using single-mode squeezing due to the
qubit-induced rotation. Our new QMFS scheme [panel (d)]
does not suffer from this problem.

lem, as optimal dispersive qubit readout involves large
couplings and hence large rotations. Further complex-
ity arises from the fact that this rotation is frequency-
dependent. The upshot is that measurement always
sees the amplified noise associated with the anti-squeezed
quadrature of the incident light, limiting the fidelity im-
provement from using squeezing to modest values and
preventing true Heisenberg-scaling [16].

Despite the above difficulties, we show in this Letter
that it is indeed possible to substantially improve dis-
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FIG. 2. Circuit QED implementation of QMFS dispersive
qubit readout with two-mode-squeezed states produced by a
non-degenerate paramp (NDPA). The signal is encoded in the
joint quadrature Y+,out ∝ Y1,out + Y2,out; see text for details.

persive qubit measurements using squeezed input states.
Our proposed scheme involves using two-mode squeezed
states in a two-cavity-plus-qubit system (see Fig. 2),
which can lead to exponential enhancement of the signal-
to-noise ratio (SNR) in dispersive measurement and
achieves true Heisenberg-limited scaling. This is possi-
ble even for large qubit-induced phase shifts, and is thus
in stark contrast from previous schemes using two-mode
squeezing for interferometry [3] or qubit readout [16].

The key to our scheme is the use of a special dynami-
cal symmetry, whereby two commuting collective quadra-
tures exhibit a simple rotation as a function of time. As
these quadratures commute, they constitute a so-called
“quantum-mechanics-free subsystem” (QMFS) [17] and
can both be simultaneously squeezed. The upshot is
that one can effectively make a dispersive qubit measure-
ment where now the uncertainties associated with the two
pointer states are not limited by the uncertainty principle
[see Fig. 1(d)]. Though the scheme is extremely general,
for concreteness we explicitly discuss an implementation
in circuit quantum electrodynamics (QED) using a trans-
mon qubit [18], as depicted in Fig. 2.

The dynamical symmetry used in our two-mode
scheme crucially relies on one of the cavities having an
effective negative frequency; it is thus related to an idea
first discussed in the context of measurement by Tsang
and Caves [19] and Wasilewski et al. [20], and which has
since been applied to other systems [17, 21, 22]. While
many applications use the idea to suppress the effects of
backaction [20–22], we instead use it as an effective means
to exploit squeezed input light. Unlike previous studies,
we calculate here the scaling of the resulting measure-
ment sensitivity, showing that one obtains Heisenberg-
limited scaling with incident photon number.

Dispersive measurement and standard squeezing– We
start by reviewing the simplest setup where a qubit dis-
persively couples to a single-sided cavity (frequency ω1)
with the Hamiltonian H = (ω1 + χσ̂z) â

†â [12]. Stan-
dard dispersive readout involves driving the input port
of the cavity with a coherent tone at the cavity frequency
(photon flux n̄0κ/4, κ is the cavity damping rate). As
illustrated in Fig. 1(a), as a consequence of the disper-

sive coupling, the output field is rotated by the angle
ϕqb = 2 arctan(2χ/κ) if the qubit is in the ground state
|0〉 and by −ϕqb for the excited state |1〉. Writing the

output field as âout(t) = e−iω1t(X̂out + iŶout)/2, for a
displacement along the real axis Xout, the signal of the
qubit state is encoded in the phase quadrature Yout; this
quadrature is then recorded with homodyne detection.

Measuring Yout for an integration time τ corresponds
to evaluating the dimensionless measurement operator
M̂ =

√
κ
∫ τ

0
dtŶout(t). The signal is the qubit-state

dependent expectation value MS = 〈M̂〉 and is the
same for all the injected states depicted in Fig. 1.
The imprecision noise is the variance of the noise op-
erator M̂N = M̂ − MS . The signal-to-noise ratio
SNR ≡

∣∣MS,|0〉 −MS,|1〉
∣∣ /(〈M̂2

N,|0〉〉 + 〈M̂2
N,|1〉〉)1/2 is,

for this coherent state dispersive readout, SNRα(τ) '
| sinϕqb|

√
2n̄0κτ [23, 24]. As expected, the SNR is max-

imized for a phase ϕqb = π/2; it also scales as
√
n̄0, akin

to standard quantum-limit scaling in interferometry [1].
Next, consider what happens if we instead inject a dis-

placed squeezed state (squeeze parameter r) into the cav-
ity. As already discussed, this is not as beneficial as one
would hope, as one always sees the noise of the anti-
squeezed quadrature (∝ e2r) [16, 25]. Consider the op-
timal case ϕqb = π/2 which maximizes the signal. For
large τ , the noise behaves as

〈M̂2
N 〉 ' κτ [sin2(θ)e−2r + cos2(θ)e2r]

+ 2
√

2 sinh(2r) cos(2θ − 3π/4), (1)

where we have dropped terms that decay exponentially
with κτ . The first line of Eq. (1) dominates in the long-
time limit, and represents the contribution from zero-
frequency noise in the output field. For this line, the
choice θ = π/2 cancels the contribution from the ampli-
fied quadrature, and leads to an exponential reduction
in the noise compared to a coherent state drive [16]. In
contrast, the second line of Eq. (1) describes the con-
tribution from initial short-time fluctuations; the noise
from the anti-squeezed quadrature here remains even if
θ = π/2. As a result, increasing r indefinitely does not
improve the SNR; for a given τ there is an optimal value
[see Fig. 3 (b–c)]. This then leads to generally mod-
est enhancement of SNR compared to a simple coherent
state drive [16]; in particular, there is almost no improve-
ment in the most relevant case where τ ∼ 1/κ [shaded
region in Fig. 3(a)]. Optimized squeezing leads at best
to the scaling N3/4 with input photon number, similar
to a Mach-Zehnder interferometer driven with squeezed
light [1, 2, 25].
Negative-freqencies and two-mode squeezing– To avoid

having the measurement corrupted by the anti-squeezed
quadrature, one ideally wants to squeeze both quadra-
tures of the input light. While this is impossible with a
single cavity, it becomes conceivable using joint quadra-
tures of two cavities. If âj = (X̂j + iŶj)/2 (j = 1, 2)
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FIG. 3. (a) SNR as a function of integration time τ for differ-
ent protocols: coherent state drive (black), displaced single-
mode squeeze state (blue), two-mode squeezed QMFS setup
(red). We assume an optimal dispersive shift χ = κ/2; for
the QMFS setup the cavity is pre-squeezed (t0 � −1/κ) with
squeeze strength e2r = 100. The coherent drive is turned on
at τ = 0. For the single-mode case, for each τ we optimize
the squeeze strength e2r ∈ [1, 100] and angle (see [25]). The
QMFS scheme gives an exponential SNR enhancement, espe-
cially in the most interesting regime where τ ∼ 1/κ (shaded
region). (b) Integration time τ required to achieve a fidelity
F = 99.99 %, as a function of e2r; parameters as in (a), except
that n̄0 = 100. Black lines correspond to an unsqueezed drive,
where the drive strength is increased such that the intracav-
ity photon number is the same as in the QMFS scheme, i.e.
n̄0 → n̄0 + 4 sinh2 r. The solid curves correspond to the case
of no photon losses (efficiency η = 1), while the dashed curves
correspond to η = 0.9. (c) Total intracavity photon number
needed to achieve F = 99.99 % in a measurement time τ .
Even with non-zero photon losses, the use of squeezing can
dramatically reduce the number of intracavity photons.

are the annihilation operators for the two cavities (in
an interaction picture with respect to the free cavity
Hamiltonians), we define X̂± = (X̂1 ± X̂2)/

√
2, Ŷ± =

(Ŷ1 ± Ŷ2)/
√

2. Since X− and Y+ commute, they can
be squeezed simultaneously, resulting in a two-mode-
squeezed state [26]. The relevant non-zero input-field
noise correlators are 〈X̂∓(t)X̂∓(t′)〉 = 〈Ŷ±(t)Ŷ±(t′)〉 =
e∓2rδ(t − t′). We stress that such states have already
been produced in circuit QED [27, 28].

This squeezing by itself is not enough: we also need
the dynamics of these joint quadratures to mimic the
behaviour of X̂ and Ŷ in a single cavity, such that the
two qubit states still give rise to a simple rotation of the
vector formed by (X−, Y+). Such a dynamics is generated
by the simple Hamiltonian [19, 20]

H = 1
2χ(X̂+X̂− + Ŷ+Ŷ−)σ̂z = χ(â†1â1 − â†2â2)σ̂z. (2)

The qubit thus needs to couple dispersively to both
cavities, with equal-magnitude but opposite-signed cou-
plings. The resulting dynamics is illustrated in Fig. 1(d):
an incident field with 〈Ŷ+〉 = 0, 〈X̂−〉 6= 0 is rotated in
a qubit-state dependent manner, resulting in an output

field with 〈Ŷ+〉 6= 0 (i.e. the measurement signal). Note
that the squeezed quadratures X−, Y+ are never mixed
with the anti-squeezed quadratures X+, Y−, hence this
amplification will not limit our scheme. We also stress
that the two cavities need not have the same frequency.

The measurement protocol involves first turning on the
vacuum two-mode squeezed drive at a time t = t0 ≤
0, and then turning on the coherent cavity drive(s) at
t = 0. This coherent drive (which displaces along X−
but not Y+) could be realized by driving one or both the
cavities. We take the optimal case where both cavities are
driven and let n̄0κ/8 denote the photon flux incident on
each cavity due to the coherent drives. The measurement
signal in Y+ can be constructed from the quadratures
Yj,out of the output field leaving each cavity. In what
follows, we consider the limit κt0 � −1, such that the
measurement is not corrupted by any initial non-squeezed
vacuum in the cavity [25].

The measurement operator is now M̂ =√
κ
∫ τ

0
dtŶ+,out(t). As expected, one finds that this

output quadrature is always squeezed, and hence the
imprecision noise is always described by 〈M̂2

N 〉 = e−2rκτ ,
independent of χ. As desired, the noise is now expo-
nentially reduced with respect to standard dispersive
readout, leading to an exponential improvement of
SNR, i.e. SNRr(τ) = er SNRα(τ) for all integration
times τ . This is in stark contrast to the single-mode
approach, where such an enhancement was only possible
at extremely long times, κτ & e4r [c.f. Eq. (1)]. The SNR
is plotted in Fig. 3(a) as a function of integration time
τ , with comparisons against the single-mode squeezing
and no-squeezing cases; our two-mode scheme realizes
dramatic improvements in the most interesting regime
where τ is not much larger than 1/κ. The integration
time τ required to achieve a measurement fidelity
F = 1 − erfc(SNR/2)/2 of 99.99 % is plotted against
squeezing strength in Fig. 3(b). Again, the QMFS
scheme results in dramatic improvements.
Heisenberg-limited scaling– We now show that the

SNR scales as the number of photons N used for the mea-
surement rather than its square root

√
N as it is the case

for the standard dispersive readout [1]. For this, we de-

fine the temporal mode Â = 1√
τ

∫ τ
0

dt[d̂in,1(t)+d̂in,2(t)] [3]

where the operator d̂in,j describes fluctuations in the
resonator-j input field. The total number of input pho-
tons N = Ns + Nd has a contribution from squeezing
Ns = 〈Â†Â〉 = 2 sinh2 r and Nd from the coherent dis-
placement. Focusing on times τ � 1/κ, we can ignore
the transient response to the coherent drive, and hence
Nd = 1

4 n̄0κτ . Fixing N and taking t0 � −1/κ, the opti-
mal SNR is obtained for Ns = N2/[2(N + 1)], and is

SNRopt = 2| sinϕqb|N
√

1 + 2/N → 2| sinϕqb|N, (3)

where we have taken the large N limit. Eq. (3) corre-
sponds to true Heisenberg scaling for any value of the
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dispersive coupling. Such scaling is not possible using
single-mode squeezed input light (see [25]).

Our QMFS scheme also shows an improved,
Heisenberg-like scaling of the SNR with the intracavity
photon number n̄. Note that the SNR for the QMFS
scheme has the same form as the SNR for a standard
(r = 0) dispersive readout made using a larger drive
flux n̄0e

2r. If we fix the intracavity photon number
n̄ = n̄0 cos2(ϕqb/2) + 2 sinh2 r and optimize r, the re-
sulting SNR scales as SNRopt ' 2| sin(ϕqb/2)|n̄√κτ , as
opposed to the conventional SNRα ∝

√
n̄.

Robustness against imperfections– Our discussion of
the QMFS scheme so far has assumed a broadband,
pure squeezing source. The purity of the squeezing is,
however, not crucial; our scheme is insensitive to the
anti-squeezed quadratures, and hence it is not essential
that their variances be as small as possible. For a fi-
nite squeezing bandwidth Γ, the input squeezing spec-
trum will typically have a Lorentzian lineshape [29]. We
find that the effects of a finite bandwidth are equiva-
lent to an effective reduction of the squeezing strength;
the SNR for the scheme is simply reduced by a prefac-
tor

√
Γτ/[Γτ + (e2r − 1)(1− e−Γτ )] [25]. One thus only

needs a modest bandwidth, e.g. Γ ∼ 10κ is enough for
κτ ∼ 10 and e2r ∼ 10.

The lack of any enhanced Purcell decay is also cru-
cial, as in our protocol the squeezing is turned on well
before the coherent measurement tone. Having a finite
squeezing bandwidth can in fact be an advantage as it
helps suppress Purcell decay of the qubit. This decay
corresponds to relaxation of the qubit by photon emis-
sion from the cavity [30]. As typical detunings ∆ � κ,
there is a wide range of ideal squeezing bandwidths sat-
isfying κ � Γ � ∆. Such bandwidths are large enough
to allow a full enhancement of the SNR (with τ & 1/κ),
and small enough that the squeezing does not apprecia-
bly modify cavity-induced Purcell decay (see [25]).

Another non-ideality is asymmetry in the system pa-
rameters. While the two cavity frequencies can differ,
we have assumed so far that they have identical damp-
ing rates (κ1 = κ2 = κ) and that the dispersive cou-
pling strengths satisfy χ1 = −χ2 = χ. Deviation from
either of these conditions breaks the symmetry yield-
ing a QMFS, causing an unwanted coupling between
the squeezed quadratures (X̂−, Ŷ+) and the anti-squeezed
quadratures (X̂+, Ŷ−). The structure of the QMFS can
persist in the presence of asymmetries for long measure-
ment times κτ � 1, under the condition [25]

χ1 + χ2

χ1 − χ2
=
κ1 − κ2

κ1 + κ2
. (4)

The SNR enhancement can however be preserved for
measurement times τ ∼ 1/κ by optimizing δκ/δχ, as il-
lustrated in Fig. 4(a). Although this might not be neces-
sary in practice, all parameters in Eq. (4) can be tuned in-
situ [18, 31, 32] thereby greatly relaxing the constraints
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FIG. 4. (a) SNR enhancement as a function of the disper-
sive shift asymmetry (χ1,2 = δχ ± χ̄) for different resonator
linewidth asymmetries (κ1,2 = κ̄±δκ) calculated for χ̄ = κ̄/2,
κτ = 10 and e2r = 100. The dashed line is the maximal
SNR obtained by optimizing δκ. (b) Calculated dispersive
shifts as a function of transmon anharmonicity EC from a
numerical diagonalization of transmon-resonator system for
each of the resonators. The parameters are EJ/h = 25 GHz,
ω1/2π = 7.6 GHz, ω2/2π = 7.9 GHz, g1/2π = 8 MHz and
g2/2π = 15 MHz. The vertical dashed line shows a typical
value of EC that leads to equal and opposite dispersive shifts.

on the system.

Finally, like any scheme employing squeezing, photon
losses effectively replace squeezed fluctuations with ordi-
nary vacuum, causing the SNR improvement to saturate
as a function of squeezing strength [25]. Despite this, our
scheme still yields considerable advantages for finite loss
rates, see Figs. 3(b) and (c).

Implementation in circuit QED– We now turn to a pos-
sible realization of this protocol in circuit QED. All pa-
rameters discussed here are readily achievable experimen-
tally. As illustrated in Fig. 2, a transmon qubit is cou-
pled to two resonators, one in the usual dispersive regime
(∆ > EC) while the other in the ‘straddling’ regime
(∆ < EC) [18, 33]. Here, ∆ is the qubit-resonators de-
tuning and EC the transmon anharmonicity. This yields
dispersive couplings χ having opposite signs as required,
see Fig. 4(b). An alternative strategy is to use a flux-
onium or a flux qubit which exhibit a richer dispersive
shift profile [34]. Note that either approach does not en-
tail a sacrifice of qubit coherence via enhanced Purcell de-
cay [25]. The displaced two-mode squeezed state required
at the input can either be generated by a NDPA such
as the Josephson parametric converter [27], a Josephson
paramp [35] or the Bose-Hubbard dimer [28].

Conclusion– We have presented a realistic measure-
ment protocol that allows one to exponentially enhance
dispersive measurement using two-mode squeezed light,
enabling Heisenberg-limited scaling even with large dis-
persive couplings. Our scheme crucially makes use of a
special symmetry in the dynamics of joint cavity quadra-
tures, a so-called “quantum-mechanics-free subsystem”.
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