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We demonstrate |W 〉 state encoding of multi-atom ensemble qubits. Using optically trapped Rb
atoms the T2 coherence time is 2.6(3) ms for N̄ = 7.6 atoms and scales approximately inversely with
the number of atoms. Strong Rydberg blockade between two ensemble qubits is demonstrated with
a fidelity of 0.89(1) and a fidelity of ∼1.0 when postselected on control ensemble excitation. These
results are a significant step towards deterministic entanglement of atomic ensembles.

PACS numbers: 03.67.-a, 42.50.Dv, 32.80.Rm

Qubits encoded in hyperfine states of neutral atoms
are a promising approach for scalable implementation of
quantum information processing[1]. While a qubit can be
encoded in a pair of ground states of a single atom, it is
also possible to encode a qubit, or even multiple qubits,
in an N atom ensemble by using Rydberg blockade to
enforce single excitation of one of the qubit states[2, 3].
Ensemble qubits have several interesting features in com-
parison to single atom qubits. Using an array of traps it
is simpler to prepare many ensemble qubits with N ≥ 1
for each ensemble, than it is to prepare an array with
exactly one atom in each trap which remains an out-
standing challenge[4–6]. In addition, a |W 〉 state en-
semble qubit encoding is maximally robust against loss
of a single atom[7], which can be remedied with er-
ror correction protocols[8], while atom loss is a critical
error for single atom qubits. Furthermore an ensem-
ble encoding facilitates strong coupling between atoms
and light, an essential ingredient for quantum network-
ing protocols[9] and atomic control of photonic interac-
tions in Rydberg blockaded ensembles[10]. As the atom-
light coupling strength grows with the number of atoms,
recent experiments[10],[11] and theory proposals[12] are
based on ensembles with N > 100. We are focused here
on studying the physics of ensembles for computational
qubits and therefore work with smaller ensembles with
up to N ∼ 10 atoms.

In this letter we demonstrate and study the coherence
and interactions of atomic ensemble qubits. We measure
the T2 coherence time of ensemble qubits achieving a ra-
tio of coherence time to single qubit π rotation time of
∼ 2600. We furthermore proceed to demonstrate strong
Rydberg blockade between two, spatially separated en-
semble qubits. With the recent demonstration of entan-
glement between a Rydberg excited ensemble and a prop-
agating photon[13] these results establish a path towards
both local and remote entanglement of arrays of ensem-
ble qubits, which will enable enhanced quantum repeater
architectures[14].

The computational basis states of the ensemble qubits

are

|0̄〉 = |01...0N 〉, |1̄〉 =
1√
N

N
∑

j=1

|0102...1j...0N 〉, (1)

where |0j〉 and |1j〉 are two ground states of the jth atom
in an N atom sample[15]. The state |1̄〉, which is a sym-
metric superposition of one of the N atoms being excited,
is commonly referred to as a |W 〉 state.
Gate protocols for ensemble qubits differ from the sin-

gle atom qubit case [2, 16] as all operations must use
blockade to prohibit multi-atom excitation. Gate opera-
tions are performed via the collective, singly excited Ry-
dberg state

|r̄〉 = 1√
N

N
∑

j=1

|0102...rj ...0N〉,

where |rj〉 is the Rydberg state of the jth atom. A single
qubit rotation R(θ, φ) with area θ and phase φ between
ensemble states |0̄〉, |1̄〉 is implemented as the three pulse

sequence |1̄〉 Ω−→
π
|r̄〉, |r̄〉 ΩN←−−−→

R(θ,φ)
|0̄〉, |r̄〉 Ω−→

π
|1̄〉. Note

that the coupling strength between states |1̄〉, |r̄〉 is the
single atom Rabi frequency Ω while the coupling between
|0̄〉, |r̄〉 is at the collective Rabi frequency ΩN =

√
NΩ.

Since ΩN depends on N , the one-qubit gate pulse lengths
depend on the number of atoms. A CZ gate between
control and target ensembles c, t is implemented as the

three pulse sequence |1̄〉c Ω−→
π
|r̄〉c, |1̄〉t Ω←→

2π
|r̄〉t, |r̄〉c Ω−→

π

|1̄〉c. The CZ gate pulses do not depend on the number
of atoms. The N dependence of the one-qubit gates can
be strongly suppressed using adiabatic pulse sequences so
that high fidelity gate operations are possible with small,
but unknown values of N [17].
The experimental setting is as described in [18]. In

brief we prepare a cold sample of 87Rb atoms in a
magneto-optical trap (MOT) and then load a variable
number of atoms into optical dipole traps. The dipole
traps shown in Fig. 1 are formed by focusing 1064 nm
light to waists (1/e2 intensity radii) of 3.0 µm. The atoms
are cooled to a temperature of ∼ 150 µK in 1-1.5 mK
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FIG. 1. (color online) Experimental geometry a) and transi-
tions used for qubit control b). The Raman light is only used
for preparation of product states, as discussed in connection
with Fig. 3.

deep optical potentials. This gives approximately Gaus-
sian shaped density distributions with typical standard
deviations σ⊥ = 0.7 µm perpendicular to the long trap
axis and σz = 7 µm parallel to the long axis. The es-
timated density at trap center is n/N = 5 × 1016 m−3.
We apply a bias magnetic field along the trap axis of
Bz = 0.24 mT and optically pump into |0〉 ≡ |5s1/2, f =
2,mf = 0〉 using π polarized 795 nm light resonant with
|5s1/2, f = 2〉 → |5p1/2, f = 2〉 and 780 nm repump light
resonant with |5s1/2, f = 1〉 → |5p3/2, f = 2〉.
Rydberg excitation coupling |0̄〉, |r̄〉 is performed by

off-resonant two-photon transitions via 5p3/2[19] using
counter-propagating 7800 and 480 nm light. With σ+
polarization for both beams we couple to the Rydberg
state |r〉 = |nd5/2,mj = 5/2〉 which is selected with a
Bz = 0.37 mT bias field. The other qubit ground state
is |1〉 ≡ |5s1/2, f = 1,mf = 0〉. Coupling between |1̄〉, |r̄〉
is performed with 7801 and 480 nm light where 7800 and
7801 have the same propagation vector and polarization
but a frequency difference of 6.8 GHz corresponding to
the 87Rb f = 1 ↔ f = 2 clock frequency. In the experi-
ments reported below we used Rydberg levels 97d5/2 and
111d5/2. In both cases strong blockade was observed in
individual ensembles with no evidence for double excita-
tion of the logical |1̄〉 state[18]. While we do not observe
double excitation of |1̄〉, experiments with two ensembles
do show evidence for double excitation of the Rydberg
state |r̄〉, which plays a role in limiting the fidelity with
which we can prepare the |1̄〉 state.
We proceed to demonstrate the coherence of the en-

semble states of Eq. (1) using Ramsey interferometry.
The amplitude of the Ramsey signal is used to quantify
the presence of N atom entanglement in the ensemble,
as has been observed in other recent experiments[20, 21].
Details of the analysis showing that 82±6% of the atoms
participate in the entangled |W 〉 state are presented in
the supplemental material[22]. We load 3 < N̄ < 10
atoms into one of the optical traps. The number of atoms
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FIG. 2. (color online) Ramsey interference measurement of
qubit coherence for N̄ = 7.6. The peak-peak amplitude of the
oscillation as a function of the gap time gives T2 = 2.6(3) ms.
The circles are data points with ±σ error bars and the dashed
and solid lines are fits to the functions va(t), vb(t) defined in
the text. The gap time is the time t between the R1(π) pulses
in Eq. (2). All data have been corrected for ∼ 1.5% probabil-
ity per atom of the blow away giving an unwanted transition
from |0〉 → |1〉. The inset shows the Ramsey oscillations for
gap times of 0 (solid line), 0.5 ms (dashed line), and 2.5 ms
(dashed-dotted line).

loaded for each measurement follows a Poisson distribu-
tion with mean N̄ . Each measurement starts with optical
pumping into |0̄〉 followed by the pulse sequence

|ψ〉 = R1(π)R0(π/2)R1(π)G(t)R1(π)R0(π/2)|0̄〉. (2)

Here R0(θ) is a pulse of area θ between states |0̄〉, |r̄〉 and
R1(θ) is a pulse of area θ between states |1̄〉, |r̄〉. The

first R0(π/2) pulse creates an equal superposition |0̄〉+|r̄〉√
2

.

This is then mapped to |0̄〉+|1̄〉√
2

with a R1(π) pulse, we

wait a gap time t described by an operator G(t), map
|1̄〉 → |r̄〉 with a R1(π) pulse, and then perform another
π/2 pulse between |0̄〉, |r̄〉. Finally, any population left
in |r̄〉 is mapped back to |1̄〉 with another R1(π) pulse.
Atoms in state |0〉 are then pushed out of the trap using
unbalanced radiation pressure from a beam resonant with
|5s1/2, f = 2〉 → |5p3/2, f = 3〉 while the dipole trap light
is chopped on and off. For the push out step a bias field
is applied along x the narrow axis of the dipole traps,
and the circularly polarized push out beam propagates
along x. This is followed by a measurement of the num-
ber of atoms remaining in the dipole trap giving the data
in Fig. 2. The amplitude of the Ramsey interference at
short gap times is limited by the |W 〉 state preparation
fidelity of about 50% for the atom number used in the
figure. The fidelities of the R0(π) and R1(π) pulses used
to prepare |W 〉 are estimated to each be at least 90%
on the basis of previous experiments[18] and the strong
inter-ensemble blockade effect we report below. We at-
tribute the limited |W 〉 state preparation fidelity to Ry-
dberg dephasing. Periodic fluorescence measurements of
the mean atom number (described in the supplemental
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FIG. 3. (color online) Dependence of ensemble coherence time
on N̄ for |W 〉 states (red circles) and product states (blue
squares). The horizontal error bars represent the bounds
for atom number measurements interleaved between Ramsey
measurements. The open symbols are for preselected N = 1
states. The dashed lines are a guide to the eye.

material to [18]) bound drifts to 6.7 < N̄ < 9, during the
12 hour measurement of this data set.

The principal sources of decoherence in this experi-
ment are expected to be magnetic noise, motional de-
phasing, and atomic collisions[23]. For small atom num-
bers and low collision rates we fit the Ramsey signal to
the expression[24] vb(t, T2) = v0/[1 + (e2/3 − 1)( t

T2

)2]3/2

and in the collision dominated regime we use a Gaus-
sian form va(t) = v0e

−(t/T2)
2

where v0 is the amplitude
at t = 0. Both functional forms give the same T2 time
within our experimental error bars of T2 = 2.6± 0.3 ms.
The π pulse times were 0.24 µs for |0̄〉 → |r̄〉, 0.06 µs for
the gap between pulses, and 0.68 µs for |r̄〉 → |1̄〉 giving a
coherence to R(π) gate time ratio of approximately 2600.

To further clarify the sensitivity to collisional dephas-
ing Fig. 3 shows the measured T2 for different N̄ , in-
cluding the case of N = 1 Fock states which are selected
using an additional fluorescence measurement before the
Ramsey sequence[18]. We see that T2 ∼ 1/N̄ , in contrast
to the 1/N2 scaling observed for GHZ states[25]. The ob-
served 1/N̄ scaling for |W 〉 states is expected for decoher-
ence dominated by collisions since the collision rate per
atom is proportional to N̄ . For comparison, the T2 time
was also measured for product states |ψ〉 ∼ (|0〉−i|1〉)⊗N .
These states were prepared using a two-frequency Raman
laser coupling |0〉 and |1〉 via the 5p3/2 level[26] as shown
in Fig. 1. Comparison of the |1̄〉 (|W 〉 state) and product
state coherence data suggests that for N & 5 the coher-
ence time is limited by collisions. For N̄ < 5 as well as for
the N = 1 Fock state data the product states show longer
coherence time. The coherence of the |W 〉 states is mea-
sured by comparison with a phase reference defined by
the beatnote of the 7800 and 7801 Rydberg lasers which
have a measured beatnote linewidth of 100 Hz FWHM.
This linewidth is consistent with the observed shorter co-
herence time of the |W 〉 states compared to the product
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FIG. 4. (color online) Ensemble to ensemble blockade for
N̄c = 9.9, N̄t = 6.2. a) Probability of preparing |1̄〉t without
blockade (red circles, solid line) and with blockade (black cir-
cles, dashed line). The solid line is a fit to a decaying sinusoid
function from [18]. The dashed line is the same fit scaled by
11%. b) Blockade data post selected on detection of |1̄〉c. The
dashed-dotted lines in both panels show the expected signal
due to state leakage during blow-away in the control and tar-
get regions.

states which are referenced to the Raman laser beatnote
which is in turn locked to a stable 6.8 GHz microwave
oscillator. We anticipate that compensated optical traps
and dynamical decoupling methods together with an op-
tical lattice to reduce collisional effects can be used to
greatly extend these coherence times[27].

To demonstrate ensemble-ensemble blockade we load
atoms into control (c) and target (t) dipole traps, opti-
cally pump into |0̄〉c|0̄〉t and apply one of two sequences.
Preparation of a superposition of |0̄〉 and |1̄〉 in the
target qubit is effected by the sequence Ua|0̄〉c|0̄〉t =
R1,t(π)R0,t(θ)|0̄〉c|0̄〉t. This should ideally leave the
qubits in the joint state |0̄〉c [cos(θ/2)|0̄〉t − sin(θ/2)|1̄〉t]
with the probability of preparing |1̄〉t proportional to
sin2(θ/2), as is shown in Fig. 4a). We see the expected
time dependence with a peak probability of P|1̄〉,t ∼
0.52, consistent with our earlier study of Fock state
preparation[18].

Rydberg blockade between two ensembles
is observed with the sequence Ub|0̄〉c|0̄〉t =
R1,c(π)R1,t(π)R0,t(θ)R0,c(π)|0̄〉c|0̄〉t. Here we have
used state |0̄〉 of the control ensemble to block the target
transfer with the final R1,c(π) pulse ideally leaving
the qubits in the joint state |1̄〉c|0̄〉t. The data in Fig.
4a) show a ratio of P|1̄〉,t(Ub)/P|1̄〉,t(Ua) = 0.11(1),
i.e. a blockade fidelity of 0.89. This implies that the
success probability of the transition R0,c(π)|0̄〉c → |r̄〉c is
bounded below by the |1̄〉t population ratio for the two
sequences. We infer that at least one atom is excited to
the Rydberg state |r〉c with probability ≥ 0.89(1).

As a further check on the inter-site blockade fidelity,
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events where the control site ends in state |1̄〉c after se-
quence Ub are post selected. The observed post-selected
target population is shown in Figure 4b), along with the
expected blow-away leakage rate of the control and target
sites which is measured to be 0.2%/atom. From the data
it can be seen that the post-selected results are consistent
with perfect inter-site blockade.
The observed high blockade fidelity exceeds that origi-

nally achieved in experiments with single atom qubits[28,
29], and is certainly sufficient to create entanglement be-
tween ensemble qubits. What has so far limited a demon-
stration of deterministic entanglement is the relatively
low probability of up to 62% [18] with which the ensem-
ble state |1̄〉 can be prepared. In order to gain insight into
what is limiting the state preparation fidelity we looked
for signatures of Rydberg-Rydberg interactions concur-
rently with strong blockade. Ideally the probability of
preparing |1̄〉c with sequence Ub, should be independent
of the pulse area θ applied to the target ensemble. How-
ever a clear dependence on θ can be seen in Fig. 5a).
We believe this effect is due to long range interactions,
where the amplitude for Rydberg atom excitation in the
target site is sufficiently blockaded to prevent it from
making the transfer to |1̄〉t with any significant proba-
bility, yet the target ensemble Rydberg excitation still
interacts with the control ensemble strongly enough to
disrupt the control ensemble state transfer. A similar
situation of partial blockade together with decoherence
of multi-atom ground-Rydberg Rabi oscillations was re-
ported earlier in [19].
A two-atom Rydberg interaction effect should scale

with the Rydberg double excitation probability, i.e. P2 ∝
Ω2

N̄
/B2, where B is the ensemble mean blockade shift[30].

To check this, we extract the slopes from linear fits to the
P|1̄〉c(θ) data for small θ and compare to the scaling pa-
rameter

F = Ω2
N̄t

[

(n/n0)
12

(R/R0)6

]−2

∝ Pdouble. (3)

Here n is the Rydberg principal quantum number and R
is the site - site separation. The larger F is for a given
set of parameters, the stronger the Rydberg-Rydberg in-
teraction, and thus the larger the slope of dP|1̄〉c(θ)/dθ.
Indeed, this is the behavior we observe, as shown in Fig.
5b), for a range of N̄ , R, and n.
This interaction effect hints at the possible mecha-

nism responsible for the observed reduction in the prob-
ability P|1̄〉 of preparing the collective qubit state in a
single ensemble. The spatial extent of one ensemble is
∼ 2σz = 14 µm giving a length scale in between the
lower two data sets in Fig. 5a). The intra-ensemble Ryd-
berg interactions are significantly stronger than between
atoms located in different ensembles at the same sepa-
ration because the dipole-dipole interaction angular fac-
tors favor atom pairs separated along z[30]. These con-
siderations imply that lack of perfect blockade leading
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FIG. 5. (color online) Probability of preparing state |1̄〉c as a
function of the target ensemble pulse area θ. a) Probability
for several parameter sets: (111d5/2, R = 8.3 and 8.7 µm)
(red diamonds), (97d5/2, R = 8.3 and 8.7 µm) (green circles),
(97d5/2, R = 17 µm) (yellow squares). The data has been
normalized to 1 at θ = 0 for clarity, with typical success
probability 40-60%. b) Comparison of the slope of the data
in panel (a) with the scaling parameter F from Eq. (3). The
color markers are the same as in panel a).

to long range Rydberg-Rydberg interactions in a single
ensemble only partially explains the observed maximum
of P|1̄〉 = 0.62 [18]. Another candidate explanation is
very strong interactions at short range in a single en-
semble which mix levels together and open anti-blockade
resonance channels[31]. The doubly excited molecular
energy structure becomes difficult to calculate with con-
fidence at short range, with many molecular potentials
near resonant[32]. For our typical Rydberg state 97d5/2
this characteristic separation is ∼ 5 µm, and for a 6 atom
sample with our ensemble spatial distributions an average
of 7 atom pairs out of 15 have R < 5 µm. We conjecture
that the strong, short range interactions give an ampli-
tude for double excitation, resulting in Rydberg-Rydberg
interactions which dephase the ground-Rydberg rotations
needed for state preparation, thereby limiting the prob-
ability of preparing the ensemble |1̄〉 state. A related re-
duction of the fidelity of Rydberg mediated atom-photon
coupling in dense ensembles due to Rydberg-ground state
interactions has also been observed[11].

In conclusion, we have demonstrated the coherence of
ensemble qubit basis states. The coherence time scales
approximately inversely with the number of atoms, but
is still several ms and 2600 times longer than our char-
acteristic gate time for N ∼ 10. Additionally we have
demonstrated inter-ensemble blockade with a fidelity of
0.89 and ∼ 1.0 when post-selecting on control ensem-
ble excitation. We identified Rydberg-Rydberg interac-
tions from weak double excitations, either at long or short
range, as a possible mechanism limiting the fidelity of en-
semble state preparation. Future work towards ensemble
entanglement and quantum computation will explore the
use of a background optical lattice to better localize the
ensembles while limiting uncontrolled short range inter-
actions.

This work was funded by NSF grant PHY-1104531 and
the AFOSR Quantum Memories MURI.
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