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We present a determination of the pion–nucleon (πN) σ-term σπN based on the Cheng–Dashen
low-energy theorem (LET), taking advantage of the recent high-precision data from pionic atoms to
pin down the πN scattering lengths as well as of constraints from analyticity, unitarity, and crossing
symmetry in the form of Roy–Steiner equations to perform the extrapolation to the Cheng–Dashen
point in a reliable manner. With isospin-violating corrections included both in the scattering lengths
and the LET, we obtain σπN = (59.1 ± 1.9 ± 3.0)MeV = (59.1 ± 3.5)MeV, where the first error
refers to uncertainties in the πN amplitude and the second to the LET. Consequences for the scalar
nucleon couplings relevant for the direct detection of dark matter are discussed.
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INTRODUCTION

The πN σ-term measures the amount of the nucleon
mass that is generated by the two lightest quarks. Since
the dominant contribution originates from the energy
content of the gluon field, due to the trace anomaly of the
QCD energy-momentum tensor, the nucleon mass would
only change moderately if the quark masses were turned
off. Thus, σπN encodes information on the explicit break-
ing of chiral symmetry and constitutes one of the funda-
mental low-energy parameters of QCD. In recent years, a
precise determination of the σ-term has become increas-
ingly urgent, given its relation to the scalar couplings of
the nucleon that are prerequisite for a consistent inter-
pretation of direct-detection dark matter searches [1–3].

Traditionally, information on σπN has been in-
ferred from πN scattering by means of the Cheng–
Dashen LET [4, 5] that relates the Born-term-subtracted
isoscalar amplitude D̄+ at the Cheng–Dashen point s =
u = m2

N , t = 2M2
π, to the scalar form factor of the nu-

cleon σ(t) evaluated at t = 2M2
π (precise definitions be-

low). The application of the LET thus requires two main
ingredients: the analytic continuation of the isoscalar πN
amplitude into the unphysical region, and the correction
due to the finite momentum transfer in σ(2M2

π). The first
task has been addressed by extrapolating partial-wave
analyses (PWAs) from the physical region to the Cheng–
Dashen point by means of dispersion relations [6–8], in
particular, in [9, 10] a formalism was developed to express
the result of the extrapolation in terms of threshold pa-
rameters for πN scattering. Similarly, the scalar form

factor requires a dispersive reconstruction to account for
the strong ππ rescattering in the isospin-0 S-wave [11].
Based on the PWA from [6, 8], a value σπN ∼ 45MeV
was inferred in [10]. This result was later challenged
by a new PWA [12], leading to a much larger value of
σπN = (64 ± 8)MeV, although based on the same for-
malism. In fact, the discrepancy could be traced back,
to about equal parts, to different input for the isoscalar
πN scattering length, the πN coupling constant, and πN
partial waves for the evaluation of the dispersive inte-
grals.

A second strategy that has been pursued relies on Chi-
ral Perturbation Theory (ChPT) to perform the extrap-
olation to the Cheng–Dashen point. However, to deter-
mine low-energy constants still input for the πN phase
shifts is required, so that the outcome of the ChPT anal-
yses tends to support the value of σπN corresponding to
the PWA used as input [13, 14]. Moreover, it has been
questioned whether the chiral representation is at all ac-
curate enough to permit a reliable extrapolation to the
Cheng–Dashen point [15]. For a detailed comparison to
results obtained in lattice QCD, we refer to [16].

In this Letter, we combine two new sources of informa-
tion on πN scattering that have become available over
the last years. First, the measurement of level shifts and
decay widths in pionic atoms [17–19] has led to a preci-
sion determination of the πN scattering lengths [20, 21].
Second, a system of Roy–Steiner (RS) equations has been
developed [22] that combines general constraints on the
πN scattering amplitude imposed by analyticity, unitar-
ity, and crossing symmetry. The construction proceeds
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similarly to Roy equations for ππ scattering [23], where
the solution for the low-energy phase shifts can be param-
eterized in terms of the S-wave scattering lengths [24].
In the case of πN scattering, the construction and solu-
tion is complicated by the presence of the crossed channel
ππ → NN̄ , cf. [25–27], as well as the increased number of
relevant partial waves. While partial results have already
been presented in [22, 28–30], here we use the complete
solution of the RS system to obtain, in combination with
the scattering-length constraints from pionic atoms, a
precision determination of the πN σ-term. In particular,
at this level of accuracy the impact of isospin-violating
(IV) corrections cannot be ignored, as demonstrated by
the isoscalar πN scattering length [20, 21, 31, 32], so that
revisiting the Cheng–Dashen LET becomes mandatory.

CHENG–DASHEN LOW-ENERGY THEOREM

We start by stating the precise formulation of the
Cheng–Dashen LET [4, 5]. In the isospin limit, the scat-
tering amplitude for the process

πa(q) +N(p) → πb(q′) +N(p′), (1)

with pion isospin labels a, b and Mandelstam variables

s = (p+ q)2, t = (p′ − p)2, u = (p− q′)2, (2)

fulfilling s+ t+ u = 2m2
N + 2M2

π, can be expressed as

T ba(ν, t) = δbaT+(ν, t) +
1

2
[τb, τa]T−(ν, t),

T I(ν, t) = ū(p′)

{

DI(ν, t)−
[/q

′, /q]

4mN
BI(ν, t)

}

u(p), (3)

where ν = (s − u)/(4mN), I = ± refers to
isoscalar/isovector amplitudes, mN and Mπ to the nu-
cleon and pion mass, τa denotes isospin Pauli matrices,
and we normalize spinors as ūu = 1. Amplitudes AIs

with definite s-channel isospin Is are
(

A1/2

A3/2

)

=

(

1 2
1 −1

)(

A+

A−

)

, A ∈ {D,B}. (4)

The LET involves the Born-term-subtracted amplitude

D̄+(ν, t) = D+(ν, t)− g2

mN
− νg2

(

1

m2
N − s

− 1

m2
N − u

)

,

(5)
where g is the πN coupling constant. The scalar form
factor of the nucleon is defined as the matrix element

σ(t) = 〈N(p′)|m̂(ūu+ d̄d)|N(p)〉, m̂ =
mu +md

2
,

(6)
with up- and down-quark massesmu andmd, momentum
transfer t = (p′ − p)2, and σ(0) = σπN . The LET then
states that

D̄+(0, 2M2
π) = σ(2M2

π) + ∆R, (7)

where ∆R subsumes higher-order corrections in the chi-
ral expansion. Corrections to the LET have been investi-
gated systematically in SU(2) ChPT, with the result that
∆R is very small: non-analytic terms are absent at full
one-loop order [15, 33], so that the dominant corrections
are expected to scale as M2

π/m
2
NσπN ∼ 1MeV. Indeed,

estimating the low-energy constants based on resonance
exchange, one obtains [33]

|∆R| <∼ 2MeV, (8)

an estimate which we will adopt in the following.
In practice, (7) is usually rewritten as

σπN = Σd +∆D −∆σ −∆R, (9)

where

∆σ = σ(2M2
π)− σπN , ∆D = D̄+(0, 2M2

π)− Σd,

Σd = F 2
π

(

d+00 + 2M2
πd

+
01

)

. (10)

Here, Fπ = 92.2MeV [34] denotes the pion decay con-
stant and the subthreshold coefficients are defined via
the expansion

D̄+(ν, t) =
∞
∑

n,m=0

d+mnν
2mtn. (11)

Although individually sizable due to strong ππ rescat-
tering, the difference ∆D − ∆σ was shown to be small
in [11]. Here, we use the updated value [35, 36]

∆D −∆σ = (−1.8± 0.2)MeV, (12)

which incorporates modern input for ππ phase shifts, ef-
fects from KK̄ intermediate states, and the uncertainties
due to πN parameters.
As alluded to above, the isoscalar channel is known

to be sensitive to IV corrections. For this reason, we
now derive a version of the LET that takes the dominant
IV effects into account. First, we define the σ-term as
the average value of proton and neutron scalar-current
matrix elements (N ∈ {p, n})

σπN =
σp + σn

2
, σN = 〈N |m̂(ūu+ d̄d)|N〉, (13)

where, up to third order in the chiral expansion, one finds
σp = σn [37]. Next, we identify the isoscalar amplitudes
everywhere with the average of the π±p → π±p charge
channels

X+ → Xp =
1

2

(

Xπ+p→π+p +Xπ−p→π−p

)

, (14)

for X ∈ {D, d00, d01, . . .}. The motivation for doing so
is two-fold: first, the π±p charge channels dominate the
πN data base, so that this scenario is closest to the one
considered in PWAs. Second, the uncertainties in the πN
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scattering lengths are smallest if one works in the phys-
ical, not the isospin basis [20, 21]. As a consequence,
we identify the nucleon and pion mass with the masses
of the proton and the charged pion, respectively. We
also assume that the radiative corrections applied in the
PWAs remove the dominant effects, and therefore we con-
sider all quantities to be virtual-photon subtracted. In
this scenario, the leading IV corrections are generated
by the mass difference between charged and neutral pion
∆π = M2

π−M2
π0. For the scalar form factor one finds [37]

∆p
σ = σp

(

2M2
π

)

− σp (15)

=
3g2AM

3
π

64πF 2
π

+
g2AMπ∆π

128πF 2
π

(

− 7 + 2
√
2 log

(

1 +
√
2
)

)

,

where gA denotes the axial charge of the nucleon. Simi-
larly, the IV corrections to ∆D can be extracted from [38]

∆p
D = F 2

π

{

Dp

(

0, 2M2
π

)

− dp00 − 2M2
πd

p
01

}

(16)

=
23g2AM

3
π

384πF 2
π

+
g2AMπ∆π

256πF 2
π

(

3 + 4
√
2 log

(

1 +
√
2
)

)

.

Taking everything together, we obtain

σπN = F 2
π

(

dp00 + 2M2
πd

p
01

)

+∆D −∆σ −∆R

+
81g2AMπ∆π

256πF 2
π

+
e2

2
F 2
π

(

4f1 + f2
)

= F 2
π

(

dp00 + 2M2
πd

p
01

)

+ (1.2± 3.0)MeV. (17)

In (17) we also included the leading corrections due to
virtual photons, encoded in the low-energy constants f1
and f2. The latter can be determined from the proton–
neutron mass difference [39], f2 = (−0.97± 0.38)GeV−1,
for the former we use the estimate |f1| ≤ 1.4GeV−1 [31,
40]. The single largest correction is generated by ∆π, an
upward shift of 3.4MeV. Such large IV corrections have
already been observed in the case of the πN scattering
lengths [31, 32].

PIONIC ATOMS

Pionic hydrogen (πH) and deuterium (πD), a π− and
a proton/deuteron bound by electromagnetism, provide
access to πN physics due to the imprint of strong inter-
actions in the energy spectrum. The shift of the ground-
state energy level in πH and πD, as well as the width of
the πH ground state, probe three different combinations
of πN scattering lengths. The input quantities relevant
for the RS equations are the s-channel-isospin scattering
lengths aIs0+, defined in terms of the π±p charge channels.
Updating the analysis of [20, 21] to account for the new
value of the πH level shift [19] and subtracting virtual-
photon effects as detailed in [41], we obtain

a
1/2
0+ = (169.8± 2.0)× 10−3M−1

π ,

a
3/2
0+ = (−86.3± 1.8)× 10−3M−1

π . (18)

Since the errors are dominated by different sources—IV

corrections in the case of a
1/2
0+ and uncertainty in the ex-

traction of the isoscalar combination for a
3/2
0+ —the errors

can be considered uncorrelated to a very good approxi-
mation. Apart from their role in the solution of the RS
equations, the scattering lengths are also a crucial ingre-
dient in the determination of the πN coupling constant
via the Goldberger–Miyazawa–Oehme sum rule [42]. In-
deed, if the scattering lengths from [6, 8] are used, one
recovers the value g2/(4π) = 14.3, whereas (18) leads to
g2/(4π) = 13.7±0.2 [20, 21]. This result, to be adopted in
the following, stands in good agreement with more recent
determinations from NN [43] and πN [44] scattering.

ROY–STEINER EQUATIONS

Roy equations [23] for ππ scattering, or RS equa-
tions [22, 25–27] for non-totally-crossing-symmetric pro-
cesses, incorporate the constraints from analyticity, uni-
tarity, and crossing symmetry in the form of dispersion
relations for the partial waves. They can be shown to be
rigorously valid in a certain kinematic region, in the case
of πN scattering the upper limit is sm = (1.38GeV)2 [22].
The integral contributions above sm as well as partial
waves with l > lm, with lm the maximal angular momen-
tum explicitly included in the calculation, are collected in
the so-called driving terms, which need to be estimated
from existing PWAs, as do inelastic contributions below
sm. The free parameters of the approach are subtraction
constants, which, in the case of ππ scattering, can be di-
rectly identified with the scattering lengths [24], while for
the solution of the πN system it is more convenient to
relate them to subthreshold parameters instead. The re-
sulting system of coupled integral equations corresponds
to a self-consistency condition for the low-energy phase
shifts, whose mathematical properties were investigated
in detail in [45]. Following [24], we pursue the follow-
ing solution strategy: the phase shifts are parameterized
in a convenient way with a few parameters each, which
are matched to input partial waves above sm in a smooth
way. To measure the degree to which the RS are fulfilled,
a χ2-like function is defined according to

χ2 =
∑

l,Is,±

N
∑

j=1

(

Re f Is
l±(Wj)− F

[

f Is
l±

]

(Wj)

Re f Is
l±(Wj)

)2

, (19)

where {Wj} denotes a set of points between threshold

and
√
sm, f

Is
l± are the s-channel partial waves with isospin

Is, orbital angular momentum l, and total angular mo-
mentum j = l ± 1/2 ≡ l±, and F

[

f Is
l±

]

the right-hand
side of the RS equations. We take lm = 1, N = 25 (dis-
tributed equidistantly), and choose the number of sub-
traction constants in such a way as to match the num-
ber of degrees of freedom predicted by the mathematical
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FIG. 1: Phase shifts δIs
l±

of the s-channel partial waves in de-
grees, obtained from the solution of the RS equations. The
dashed line indicates our central solution, the bands the un-
certainty estimate. The partial waves are labeled by the spec-
troscopic notation L2Is2J .

properties of the Roy equations [45]. It should be stressed
that the form of the RS equations only reduces to that of
Roy equations once the t-channel is solved, see [22]. In
the solution of the RS equations we minimize (19) with
respect to the subtraction constants (identified with sub-
threshold parameters) and the parameters describing the
low-energy phase shifts, while imposing (18) as additional
constraints.

We performed a number of checks as regards the sensi-
tivity of our solution to the input quantities: the number
of grid points N as well as the number of parameters
used in the description of the partial waves were varied,
the s- and t-channel partial waves in the driving terms
truncated at different lmax = 4, 5 and Jmax = 2, 3, the
matching conditions at sm as well as the s-channel partial
waves evaluated from different PWAs, and the sensitivity
to the precise definition of the χ2-function was investi-
gated. In addition, to stabilize the fit we imposed sum
rules for the higher subthreshold parameters. The solu-
tion for the s-channel partial waves, expressed in terms
of the phase shifts and including uncertainty estimates
from these systematic studies as well as the uncertain-
ties in the scattering lengths and the coupling constant,
is shown in Fig. 1. A more detailed account of our RS
solution will be given in [16].

Apart from low-energy phase shifts, the RS solution
provides a consistent set of subthreshold parameters. In
particular, this allows us to pin down Σd in accord with
both the RS and the scattering-length constraints. Lin-

earizing around the central values (18), we find

Σd = (57.9± 0.9)MeV+
∑

Is

cIs∆aIs0+,

c1/2 = 0.24MeV, c3/2 = 0.89MeV, (20)

where ∆aIs0+ measures the deviation from (18) in units
of 10−3M−1

π . Already in this linearized form, one re-
covers Σd from [10] if the scattering lengths from [6, 8]
are inserted, while the modern input produces Σd =
(57.9 ± 1.9)MeV (this also indicates that the S-wave
phase shifts from [6, 8] need to be amended close to
threshold). Moreover, the difference to [12] can be traced
back to the P -wave scattering volume a+1+, which needs
to be known extremely accurately due to its large weight
in the formalism of [9, 10]. Once the RS equations are
solved, the threshold parameters can be calculated from
sum rules, and indeed we find that the result for a+1+ is
slightly lower than the value used in [12], which already
suffices to explain the difference [16]. The main impact
of the RS equations in the σ-term determination thus
amounts to eliminating the need for independent input
for a+1+. In total, our result for the σ-term becomes

σπN = (59.1± 3.5)MeV. (21)

Although already 4.2MeV are due to new corrections to
the LET (thereof 3.0MeV from isospin breaking), we do
observe a significant increase compared to [10]. As illus-
trated by (20), this effect can be immediately traced back
to our modern knowledge of the πN scattering lengths as
extracted from pionic atoms. By combining this informa-
tion with the constraints from RS equations, the σ-term
can be determined to a remarkable accuracy.

SCALAR NUCLEON COUPLINGS

The existence of a weakly-interacting massive particle
(WIMP), one of the most promising dark-matter can-
didates, could be established in direct-detection experi-
ments, which are sensitive to the recoil of the WIMP scat-
tering off nuclei (see [46] for a review). The interpreta-
tion of these searches relies on the couplings of the WIMP
to nucleons, according to its quantum numbers. A pre-
cise determination of σπN therefore has immediate con-
sequences for the scalar channel, since, as it was shown
in [3], the scalar couplings of the nucleon to q = u, d,

mNfN
q = 〈N |mq q̄q|N〉, (22)

follow once σπN is determined, with all further correc-
tions taken into account within SU(2) ChPT. Taking
mu/md = 0.46± 0.03 from [47], we obtain

fp
u = (20.8± 1.5)× 10−3, fp

d = (41.1± 2.8)× 10−3,

fn
u = (18.9± 1.4)× 10−3, fn

d = (45.1± 2.7)× 10−3.
(23)
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In addition, we quote our result for

∑

q=u,...,t

fN
q =

2

9
+
7

9

(

fN
u +fN

d +fN
s

)

= 0.305±0.009, (24)

averaged over proton and neutron, and with fN
s taken

from [48] (in principle, the strangeness coupling follows
from the σ-term by means of SU(3) considerations, but
the uncertainties are too large to compete with recent
lattice determinations). This particular combination of
scalar coefficients becomes relevant in the context of
Higgs-mediated interactions, not only in direct detection,
but also in Higgs-induced lepton flavor violation [49]. In
particular in (23) the uncertainties have been appreciably
reduced, thanks to the precise knowledge of σπN inferred
from our RS equation analysis of πN scattering.
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