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A substantial volume of research has been devoted to studies of community structure in networks,
but communities are not the only possible form of large-scale network structure. Here we describe
a broad extension of community structure that encompasses traditional communities but includes a
wide range of generalized structural patterns as well. We describe a principled method for detecting
this generalized structure in empirical network data and demonstrate with real-world examples how
it can be used to learn new things about the shape and meaning of networks.

The detection and analysis of large-scale structure in
networks has been the subject of a vigorous research
effort in recent years, in part because of the highly
successful application of ideas drawn from statistical
physics [1, 2]. Particular energy has been devoted to
the study of community structure, meaning the division
of networks into densely connected subgroups, a common
and revealing feature, especially in social and biological
networks [3]. Community structure is, however, only one
of many possibilities where real-world networks are con-
cerned. In this paper, we describe a broad generaliza-
tion of community structure that encompasses not only
traditional communities but also overlapping or fuzzy
communities, ranking or stratified structure, geometric
networks, and a range of other structural types, yet is
easily and flexibly detected using a fast, mathematically
principled procedure which we describe. We give demon-
strative applications of our approach to both computer-
generated test networks and real-world examples.
Community structure can be thought of as a division

of the nodes of a network into disjoint groups such that
the probability of an edge is higher between nodes in
the same group than between nodes in different groups.
For instance, one can generate artificial networks with
community structure using the stochastic block model, a
mathematical model that follows exactly this principle.
In the stochastic block model the nodes of a network
are divided into k groups, with a node being assigned
to group r with some probability γr for r = 1 . . . k, and
then edges are placed between node pairs independently
with probabilities prs where r and s are the groups the
nodes fall in. If the diagonal probabilities prr are larger
than the off-diagonal ones, we get traditional community
structure.
Alternatively, however, one can also look at the

stochastic block model another way: imagine that we as-
sign each node a random node parameter x between zero
and one and edges are placed between node pairs with a
probability ω(x, y) that is a function of the node param-
eters x and y of the pair. If ω(x, y) is piecewise constant
with k2 rectangular regions of size γrγs and value prs,
then this model is precisely equivalent to the traditional

block model. But this prompts us to ask what is so spe-
cial about piecewise constant functions? It is certainly
possible that some networks might contain structure that
is better captured by functions ω(x, y) of other forms.
Why not let ω(x, y) take a more general functional form,
thereby creating a generalized type of community struc-
ture that includes the traditional type as a subset but
can also capture other structures as well? This is the fun-
damental idea behind the generalized structures of this
paper: edge probabilities are arbitrary functions of con-
tinuous node parameters.
The idea is related to a number threads of work in the

previous literature. One, in sociology and statistics, con-
cerns “latent space” models, in which nodes in a network
are located somewhere in a Euclidean space and are more
likely to be connected if they are spatially close than if
they are far apart [4]. Work within physics, mathemat-
ics, and computer science on graph metrics and embed-
dings addresses similar questions though with different
methods [5–7]. The other thread, in the mathematics lit-
erature, concerns so-called “graphon” models and does
not deal with the analysis of empirical data but with the
mathematical properties of models, showing in particular
that models of a kind similar to that described here are
powerful enough to capture the properties of any theo-
retical ensemble of networks in the limit of large size, at
least in the case where the networks are dense [8, 9].
In this paper, we define a specific model of generalized

community structure and a method for fitting it to em-
pirical data using Bayesian inference. The fit places each
node of the network in the “latent space” of the node
parameters x and, simultaneously, gives us an estimate
of the probability function ω(x, y). Between them, these
two outputs tell us a great deal about the structure a
network possesses and the role each node plays within
that structure. The method is computationally efficient
in practice, allowing for its application to large networks,
and provides significantly more insight than the tradi-
tional community division into discrete groups, or even
recent generalizations to overlapping groups [10, 11].
We begin by defining a model that generates networks

with the generalized community structure we are inter-
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ested in. The model follows the lines sketched above, but
with some crucial differences. We take n nodes and for
each node u we generate a node parameter xu uniformly
at random in the interval [0, 1]. Then between each pair
of nodes u, v we place an undirected edge with probabil-
ity

puv =
dudv
2m

ω(xu, xv), (1)

where du, dv are the degrees of the nodes, m = 1
2

∑

u du
is the total number of edges in the network, and ω(x, y)
is a function of our choosing, which we will call the edge

function. Note that ω(x, y) must be symmetric with re-
spect to its arguments for an undirected network such as
this.
The inclusion of the degrees allows us to match the

expected degree distribution of the model network to the
distribution for the observed network [14]. Without it,
the model effectively assumes a Poisson degree distribu-
tion, which is a poor fit to most networks [12, 13] and can
cause the calculation to fail [15]. The factor dudv/2m
is the probability of an edge between nodes with de-
grees du, dv if edges are placed at random [2]. Hence
ω(xu, xv) parametrizes the variation of the probability
relative to this baseline level and is typically of order 1,
making puv small in the limit where m becomes large.
Given the model, we fit it to empirical network data us-

ing the method of maximum likelihood. The probability
or likelihood P (A,x|ω) that we generate a particular set
of node parameters x = {xu} and a particular network
structure described by the adjacency matrix A = {auv}
is

P (A,x|ω) =
∏

u<v

pauv

uv (1− puv)
1−auv . (2)

(Recall that the node parameters xu are chosen uniformly
on the interval [0, 1], so their prior probability density is
simply 1.) To find the value of the edge function ω(x, y)
that best fits an observed network we want to maximize
the marginal likelihood

P (A|ω) =

∫

P (A,x|ω) dnx, (3)

or equivalently its logarithm, whose maximum falls in the
same place. Direct maximization leads to a set of implicit
equations that are hard to solve, even numerically, so
instead we employ the following trick.
For any positive-definite function f(x), Jensen’s in-

equality says that

log

∫

f(x) dx ≥

∫

q(x) log
f(x)

q(x)
dx, (4)

where q(x) is any probability distribution over x such
that

∫

q(x) dx = 1. Applying (4) to the log of the

marginal likelihood, Eq. (3), we get

log

∫

P (A,x|ω) dnx ≥

∫

q(x) log
P (A,x|ω)

q(x)
dnx, (5)

where q(x) is any probability distribution over x. It is
straightforward to verify that the exact equality is recov-
ered, and hence the right-hand side maximized, when

q(x) =
P (A,x|ω)

∫

P (A,x|ω) dnx
. (6)

Further maximization with respect to ω then gives us
the maximum of the marginal likelihood, which is the
result we are looking for. Put another way, a double
maximization of the right-hand side of (5) with respect
to both q(x) and ω will achieve the desired result. And
this double maximization can be conveniently achieved
by alternately maximizing with respect to q(x) using (6)
and with respect to ω by differentiating.
This method, which is a standard one in statistics and

machine learning, is called an expectation–maximization
or EM algorithm [16]. It involves simply iterating these
two operations from (for instance) a random initial con-
dition until convergence. The converged value of the
probability density q(x) has a straightforward physical
interpretation. Combining Eqs. (3) and (6), we have
q(x) = P (A,x|ω)/P (A|ω) = P (x|A, ω). In other words,
q(x) is the posterior probability distribution on the node
parameters x given the observed network and the edge
function ω(x, y). It tells us the probability of any given
assignment x of parameters to nodes. It is this quantity
that will in fact be our primary object of interest here.
Substituting from Eqs. (1) and (2) into (5), keeping

terms to leading order in small quantities and dropping
overall constants, we can write the quantity to be maxi-
mized as
∫∫ 1

0

∑

uv

quv(x, y)

[

auv logω(x, y)−
dudvω(x, y)

2m

]

dx dy,

(7)
where quv(x, y) =

∫

q(x)δ(xu − x)δ(xv − y) dnx is the
posterior marginal probability that nodes u, v have node
parameters x, y respectively. The obvious next step is to
maximize (7) by functional differentiation with respect
to ω(x, y), but there is a problem. If we allow ω to
take any form at all then it has an infinite number of
degrees of freedom, which guarantees overfitting of the
data. Put another way, physical intuition suggests that
ω(x, y) should be smooth in some sense, and we need a
way to impose that smoothness as a constraint on the op-
timization. There are a number of ways we could achieve
this, but a common one is to express the function in
terms of a finite set of basis functions. For nonnegative
functions such as ω a convenient basis is the Bernstein
polynomials of degree N :

Bk(x) =

(

N

k

)

xk(1− x)N−k, k = 0 . . .N. (8)
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The Bernstein polynomials form a complete basis for
polynomials of degree N and are nonnegative in [0, 1],

so a linear combination
∑N

k=0 ckBk(x) is also nonnega-
tive provided ck ≥ 0 for all k. Our edge function ω(x, y)
is a function of two variables, so we will write it as a
double expansion in Bernstein polynomials

ω(x, y) =
N
∑

j,k=0

cjkBj(x)Bk(y), (9)

which again is nonnegative for cjk ≥ 0. Bernstein poly-
nomials have excellent stability properties under fluctu-
ations of the values of the expansion coefficients, which
makes them ideal for statistical applications such as ours.
Note that since ω(x, y) is symmetric with respect to its
arguments we must have cjk = ckj .
If ω(x, y) is constrained to take this form, then in-

stead of the unconstrained maximization of (7) we now
want to maximize with respect to the coefficients cjk.
To do this, we substitute from (9) into (7) and apply
Jensen’s inequality again, this time in its summation
form log

∑

i fi ≥
∑

i Qi log fi/Qi. Then, by the same
argument as previously, we find that the optimal coeffi-
cient values are given by the double maximization with
respect to cjk and Qjk(x, y) of

∫∫ 1

0

µ(x, y)
∑

jk

Qjk(x, y) log
cjkBj(x)Bk(y)

Qjk(x, y)
dx dy

−

∫∫ 1

0

ν(x)ν(y)
∑

jk

cjkBj(x)Bk(y) dx dy, (10)

where

µ(x, y) =
1

2m

∑

uv

auvquv(x, y), ν(x) =
1

2m

∑

u

duqu(x),

(11)
and qu(x) = n−1

∑

v

∫

quv(x, y)dy is the marginal proba-
bility that node u has node parameter x. The maximiza-
tion with respect to Qjk(x, y) is achieved by setting

Qjk(x, y) =
cjkBj(x)Bk(y)

∑

jk cjkBj(x)Bk(y)
, (12)

and the maximization with respect to cjk is achieved by
differentiating, which gives

cjk =

∫∫

µ(x, y)Qjk(x, y) dx dy
∫

ν(x)Bj(x) dx
∫

ν(y)Bk(y) dy
. (13)

Since all quantities on the right of this equation are non-
negative, cjk ≥ 0 for all j, k and hence ω(x, y) ≥ 0, as
required.
The calculation of the optimal values of the cjk is a

matter of iterating Eqs. (12) and (13) to convergence,
starting from the best current estimate of the coefficients.
Note that the quantities µ and ν need be calculated only

once each time around the EM algorithm, and both can
be calculated in time linear in the size of the network
in the common case of a sparse network with m ∝ n.
The integrals in Eq. (13) we perform numerically, using
standard Gauss–Legendre quadrature.
This, in principle, describes a complete algorithm for

fitting the model to observed network data, but in prac-
tice the procedure is cumbersome because of the denom-
inator of Eq. (6), which involves an n-dimensional in-
tegral, where n is the number of nodes in the network,
which is typically large. The traditional solution to this
problem is to subsample the distribution q(x) approxi-
mately using Monte Carlo importance sampling. Here,
however, we use a different approach proposed recently
by Decelle et al. [17], which employs belief propagation
and returns good results while being markedly faster than
Monte Carlo. The method focuses on a function ηu→v(x),
called the belief, which represents the probability that
node u has node parameter x if node v is removed from
the network. The removal of node v allows us to write a
self-consistent set of equations whose solution gives us the
beliefs. The equations are a straightforward generaliza-
tion to the present model of those given by Decelle et al.:

ηu→v(x) =
1

Zu→v

exp

(

−
∑

w

dudw

∫ 1

0

qw(y)ω(x, y) dy

)

×
∏

w( 6=v)
auw=1

∫ 1

0

ηw→u(y)ω(x, y) dy, (14)

where qw(y) is again the marginal posterior probability
for node w to have node parameter y and as before we
have dropped terms beyond leading order in small quanti-
ties. The quantity Zu→v is a normalizing constant which
ensures that the beliefs integrate to unity:

Zu→v =

∫ 1

0

exp

(

−
∑

w

dudw

∫ 1

0

qw(y)ω(x, y) dy

)

×
∏

w( 6=v)
auw=1

∫ 1

0

ηw→u(y)ω(x, y) dy dx. (15)

The belief propagation method consists of the iteration
of these equations to convergence starting from a suitable
initial condition (normally the current best estimate of
the beliefs). The equations are exact on networks that
take the form of trees, or on locally tree-like networks in
the limit of large network size (where local neighborhoods
of arbitrary size are trees). On other networks, they are
approximate only, but in practice give excellent results.
Once we have the values of the beliefs, the crucial two-

node marginal probability quv(x, y) is given by

quv(x, y) =
ηu→v(x)ηv→u(y)ω(x, y)

∫∫ 1

0 ηu→v(x)ηv→u(y)ω(x, y) dx dy
. (16)
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FIG. 1: (a) Left: density plot of the posterior marginal prob-
ability densities qu(x) that node u has node parameter x for
an application of our algorithm to a 600-node stochastic block
model with three groups. Colors indicate the probabilities
and there are 600 columns, one for each node. Right: density
plot of the edge function ω(x, y). (b) The neural network of
the worm C. elegans, drawn in real space, as it falls within
the body of the worm. Colors represent the average values of
the node parameters xu inferred for each neuron by our algo-
rithm. (c) Network representation of the interstate highways
of the contiguous United States. Again, node colors represent
the average node parameters xu.

Armed with these quantities for every node pair con-
nected by an edge, we can evaluate µ(x, y) and ν(x) from
Eq. (11) then iterate Eqs. (12) and (13) to compute new
values of the parameters cjk, and repeat. The final algo-
rithm is efficient, with each iteration of the belief prop-
agation equations running in time linear in the network
size [14].
We give three example applications of our methods,

one to a computer-generated benchmark network and
the others to real-world networks displaying nontrivial
latent-space structure that is readily uncovered by our
algorithm.
For our first example, we use a computer-generated

test network created using the standard stochastic block
model, with n = 600 nodes divided into three equally

sized groups of 200 nodes each, with probabilities pin =
cin/n and pout = cout/n for edges between nodes in the
same and different groups respectively and cin = 15,
cout = 3. Figure 1a shows a density plot of the marginal
probability distributions qu(x) on the node parameters
calculated by our algorithm using a degree-4 (quartic)
polynomial representation of the edge function ω. (We
also used quartic representations for the other examples
below.) The plot consists of 600 columns, one for each
node, color coded to show the value of qu(x) for the cor-
responding node. As the plot shows, the algorithm has
found the three known groups in the network, placing
them at three widely spaced points in the latent space
of the node parameters. (In this case, the first group is
placed in the middle, the second at the top, and the third
at the bottom, but all orders are equivalent.) We also
show a plot of the inferred edge function ω(x, y), which
in this case has a heavy band along the diagonal, indicat-
ing “assortative” structure, in which nodes are primarily
connected to others in the same group.
Our second example is a real-world network, the neu-

ral network of the nematode (roundworm) C. elegans,
which has been mapped in its entirety using electron mi-
croscopy [18, 19] and contains a total of 299 neurons.
The worm has a long tubular body, with neurons ar-
ranged not just in its head but along its entire length.
Neurons tend to be connected to others near to them,
so we expect spatial position to play the role of a latent
variable and our algorithm should be able to infer the po-
sitions of neurons by examining the structure of network.
Figure 1b shows that indeed this is the case. The figure
shows the network as it appears within the body of the
worm, with nodes colored according to the mean values
of the node parameters found by the algorithm, and we
can see a strong correlation between node color and posi-
tion. The largest number of nodes is concentrated in the
head, mostly colored red in the figure; others along the
body appear in blue and green. If we did not know the
physical positions of the nodes in this case, or if we did
not know the correlation between position and network
structure, we could discover it using this analysis.
Our third example, shown in Fig. 1c, is an analysis

of the network of interstate highways in the contiguous
United States. This network is embedded in geometric
space, the surface of the Earth. Again we would expect
our algorithm to find this embedding and indeed it does.
The colors of the nodes represent the mean values of their
node parameters and there is a clear correspondence be-
tween node color and position, with the inferred node
parameters being lowest in the north-east of the country
and increasing in all directions from there. (Note that
even though the portion of the network colored in red
and orange appears much larger than the rest, it is in
fact about the same size in terms of number of nodes be-
cause of the higher density of nodes in the north-east.)
The true underlying space in this case has two dimen-
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sions, where our model has only one, and this suggests
a potential generalization to latent spaces with two (or
more) dimensions. It turns out that such a generalization
is possible and straightforward, but we leave the devel-
opments for future work.
To summarize, we have in this paper described a gener-

alized form of community structure in networks in which
network nodes are placed at positions in a continuous
space and edge probabilities depend in a general manner
on those positions. We have given a computationally effi-
cient algorithm for inferring such structure from empiri-
cal network data, based on a combination of an EM algo-
rithm and belief propagation, and find that it successfully
uncovers nontrivial structural information about both ar-
tificial and real networks in example applications.
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Phys. Rev. Lett. 107, 065701 (2011).

[18] J. G. White, E. Southgate, J. N. Thompson, and S. Bren-

ner, Phil. Trans. R. Soc. London 314, 1 (1986).
[19] B. Szigeti, P. Gleeson, M. Vella, S. Khayrulin,

A. Palyanov, J. Hokanson, M. Currie, M. Cantarelli,
G. Idili, and S. Larson, Frontiers in Computational Neu-
roscience 8, 137 (2014).

[20] See Supplemental Material at [URL will be inserted by
publisher], which includes Refs. [21] and [22].

[21] A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová,
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