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We argue that in addition to the Hall conductance and the non-dissipative component of the
viscous tensor there exists a third independent transport coefficient, which is precisely quantized,
taking on constant values along quantum Hall plateaus. Relying on the holomorphic properties of
the quantum Hall states, we show that the new coefficient is the Chern number of a vector bundle
over moduli space of surfaces of genus two or higher and therefore can not change continuously along
the plateau. As such it does not transpire on a sphere or a torus. In the linear response theory
this coefficient determines intensive forces exerted on electronic fluid by adiabatic deformations of
geometry and represents the effect of the gravitational anomaly. We also present the method of
computing the transport coefficients for QH-states.
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1. Introduction Quantum Hall states are distinguished
by a precise quantization of the Hall conductance in ma-
terials with imprecisely known characteristics. A natu-
ral question is whether the Hall conductance is a unique
quantized characteristic of the quantum Hall state. Are
there any other independent transport coefficients pre-
cisely quantized on the QH-plateaus?
Precise quantization in materials occurs when the

transport is a non-dissipative adiabatic process. QHE is
an example of a system where adiabatic conditions are in
place. Namely, the low energy states are separated from
the rest of the spectrum by a gap and adiabatic changes
of parameters produce states with the flux. However,
only adiabatic processes with the nontrivial first Chern
class yield quantized transport coefficients.
In this paper we show that apart from the Hall con-

ductance there exist two more quantized transport co-
efficients, although at present only the former is experi-
mentally accessible. One of these coefficients is the non-
dissipative component of viscous tensor introduced in [1–
3]. Indications for the existence of another precise trans-
port coefficient appeared recently in connection with the
gravitational anomaly found in the context of QHE in
Refs. [4–12], see also [13].
Precise quantization on QH plateaus of the non-

dissipative transport coefficients can be explained from
two points of view. The first, topological explanation
is through their relation to topological invariants, such
as Chern numbers of vector bundles over the appropri-
ate parameter space [14–16]. For example, in the case
of the Hall conductance, the parameter space is spanned
by Aharonov-Bohm fluxes piercing through the handles
of the Riemann surface. For the non-dissipative viscosity
the relevant parameter space is the moduli space of com-
plex structures on the torus [1–3]. In this paper we show
that the third coefficient shows up, when the parameter
space is the moduli space of complex structures for the
surfaces of genus 2 and higher.
For this reason, we discuss the precise transport for

QH-states on compact Riemann surfaces. We develop
a general method to compute all three transport coeffi-

cients at once, with the emphasis on the third coefficient,
which is the most subtle. Then we construct the topolog-
ical invariants which are responsible for the precise quan-
tization. Our method also sheds new light on the relation
between the adiabatic transport in QHE and conformal
field theory. The method relies on holomorphic proper-
ties of the QH-states.
The second view on the transport coefficients is via

the local linear response theory. Although it does not
establish quantization [14, 15], the linear response the-
ory often provides a clearer physical interpretation. The
third coefficient we consider describes an intensive part
of non-dissipative viscosity, which does not depend on
the fluid density, and is an analog of Casimir forces.

2. Electromotive adiabatic transport We begin with an
example illustrating the quantization of non-dissipative
adiabatic transport and its relation to the linear response
theory, which goes back to [14–17]. We adopt the units
in which adiabatic parameters, transport coefficients and
adiabatic curvature are dimensionless.
We consider the charge transport in QHE on a torus

with Aharonov-Bohm (AB) fluxes ϕa and ϕb along the
a and b cycles. In the absence of dissipative diagonal
components of the conductance matrix, the electromotive
force (emf) ϕ̇b produces a current along the a cycle Ia =
1
2πσab ϕ̇b. An adiabatic increase of the AB-flux by the

flux unit h/e transports the charge Qa = 1
2π

∫ 2π

0
σab dϕb.

The transported charge defines the adiabatic transport
coefficient σH = Qa as an average of the Hall conduc-
tance over the flux period. A more general definition [15]
involves a non-dissipative conductance 2-form

Ω =
1

2π
σab δϕb ∧ δϕa. (1)

Then the adiabatic transport coefficient is the average of
this 2-form over a closed 2-cycle in the parameter space
(in this case, a torus Tϕ : 0 ≤ ϕa, ϕb < 2π)

σH =
1

2π

∫

Tϕ

Ω. (2)
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Following the arguments of [14, 15, 18], the conductance
2-form (1) is proportional to the adiabatic curvature

~Ω = −i 〈δψ|δψ〉. (3)

In this formula ψ is a normalized ground state and δψ its
external derivative over the parameter space. In the frac-
tional QH case, when the ground state on a closed surface
is degenerate, the symbol 〈δψ|δψ〉 includes the trace over
all degenerate states divided by their total number. For
example, on the torus there are m = 1/ν Laughlin states
ψ1, . . . , ψm, where ν is the filling fraction. Then (3) reads
~Ω = −i ν

∑m
r=1〈δψr|δψr〉. Mathematically the vector

of the ground states is a section of the rank m hermi-
tian vector bundle over the parameter space, whose first
Chern number i

2π

∑m
r=1

∫

〈δψr |δψr〉 is an integer. Thus
the conductance (2) is quantized in units of the filling
fraction ν.
A subtle difference between adiabatic transport and

the conductance matrix was emphasized in [14, 16]: while
the conductance 2-form (1) may fluctuate in mesoscopic
systems, the adiabatic transport coefficient (2) does not.
The conductance 2-form consists of a precisely quantized
part that saturates the adiabatic transport (2), and a
non-universal exact 2-form which does not affect it. We
emphasize the difference by labeling the precise adiabatic
transport by a subscript H , like σH in (2) to distinguish
it from a non-precise linear response coefficient σ in (1).
This point reflects the difference of approaches of ”ef-

fective action” [9–12] and the generating functional [4–7]
with the adiabatic transport (2). The effective action is
given by the integral of the adiabatic curvature (3) over a
surface in the parameter space enclosed by the adiabatic
process. Hence the entire conductance form (1), includ-
ing the part, which is an exact 2-form, is relevant. In
contrast, the adiabatic transport coefficient is given by
the integration of the adiabatic curvature over a closed
2-cycle, as in (2). For this integral only the universal part
of the conductance form (2) is relevant, while the exact
part of the 2-form does not contribute.

3. Geometric adiabatic transport In addition to the
charge transport, there is another set of adiabatic pa-
rameters related to the deformations of geometry. In the
seminal papers Avron, Seiler, Zograf [1] and Lévay [2]
computed the adiabatic transport associated with defor-
mations of the complex modulus τ = τ1+iτ2 of the torus.
The modulus defines a complex structure via complex co-
ordinate z = x+ τy. In these coordinates the metric has
the form ds2 = gzz̄|dz|

2, with the diagonal components
vanishing gzz = gz̄z̄ = 0, and gzz̄ = V/τ2, where V is the
area of the surface.
An infinitesimal change of the modulus τ → τ + δτ

preserves the area but transforms the metric

δ(ds2) = δgzz̄|dz|
2 + δgzz(dz)

2 + δgz̄z̄(dz̄)
2, where

g−1
zz̄ δgzz̄ = 2|δµ|2, g−1

zz̄ δgzz = δµ̄, g−1
zz̄ δgz̄z̄ = δµ. (4)

and δµ is called Beltrami differential. In the case of the
torus δµ = iδτ

2τ2
does not depend on the coordinates.

According to [1, 2] the adiabatic curvature is propor-
tional to invariant area form on the moduli space

Ω = −2iηH(δµ ∧ δµ̄), δµ =
iδτ

2τ2
, (5)

where ηH is a universal transport coefficient. The au-
thors of [1] interpreted the (~/V )ηH as a non-dissipative
component of the viscosity.
The computations of [1, 2] have been carried out for

the integer QHE and on the torus. They have been ex-
tended in [19, 20] to the fractional QH-states, also on
the torus. It was shown that on the torus the coefficient
ηH is extensive, i. e. proportional to the number of flux
quanta

torus : ηH = ςHNΦ, NΦ =
1

2π

∫

BdV (6)

For the usual Laughlin states ςH = 1/4. The parameter
space M in the case of the torus is the fundamental do-
main of a certain subgroup of the modular group, with
the volume equal to volM = i

∫

δµ ∧ δµ̄ = π. The inte-
gral of the adiabatic curvature (5) over this space

1

2π

∫

M

Ω = −
ηH
π

volM (7)

is the Chern number. Albeit non-integer it is a topolog-
ical invariant which ensures precise quantization of ηH .
Now we turn to another universal coefficient. We will

show that the relation (6) acquires an intensive quantum
correction (9), which becomes visible only on surfaces
with genus two and higher. Relation (7) establishes its
preciseness. We comment that the integer QHE on com-
pact surfaces with a constant negative curvature was first
studied in the important paper of Lévay [3].

4. Geometric adiabatic transport - the main result We
state the main result first and then sketch its derivation.
We briefly recall the basic notions of the moduli space

of complex structures [21]. We would like to consider
deformations of the metric (4), which exclude unphysical
coordinate reparameterizations, or diffeomorphisms, z →
z + ǫ(z, z̄). These correspond to Beltrami differentials of
the form ∂z̄ǫ, as follows from (4). Physical deformations
δµ̄ are orthogonal to diffeomorphisms with respect to the
standard inner product:

∫

Σ
(∂z̄ǫ)δµ̄ gzz̄dzdz̄ = 0. Thus

they are given by holomorphic differentials

∂z̄(gzz̄δµ̄) = 0. (8)

For surfaces of a genus g ≥ 2 there are 3g − 3 inde-
pendent holomorphic differentials ηl. The corresponding
Beltrami differential δµ = g−1

zz̄

∑3g−3
l=1 η̄lδyl is character-

ized by 3g − 3 complex coordinates δy1, . . . , δy3g−3 on
the tangent space to the moduli space. On the torus the
moduli space has complex dimension one. On the sphere
the moduli space is just a point.
We recall the notion of the Weil-Petersson form on the

moduli space. It is the form invariant with respect to a
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coordinate choice of the moduli space

ΩWP = i

∫

Σ

(δµ ∧ δµ̄ )dV.

Here dV = gzz̄dzdz̄ is the volume element of the surface
Σ. We will show that the universal part of the adiabatic
curvature of QH-states on the moduli space is

Ω = −2ηHΩWP , ηH = ςHNΦ −
cH
12
χ(Σ), (9)

where cH is a new precise transport coefficient, and
χ(Σ) = 2−2g is the Euler characteristic of the surface.
We list the value of all three precise coefficients for the

spin-j Laughlin states which we defined in [6, 7]

σH = ν, ςH =
1

4
(1− 2jν), cH = 1−

3

ν
(1− 2jν)2 (10)

and compute them below at once. Notice that the value
of cH for ν = 1/3 Laughlin state is cH = −8, and that
ςH may have any sign and even vanish for spin-j states.
In sec. 8 we identify the coefficient ςH and cH with the
background charge and the central charge of the relevant
conformal field theory.
The formula (10) generalizes the result of [1–3], and

also [19, 20] to Laughlin states on an arbitrary surface.
We emphasize that as an adiabatic transport coefficient,
cH cannot be seen on the torus, since Eq.(9) then reduces
to (5) (cf.,[3]).
In [20] it was argued that the extensive part ςHNΦ of

ηH in (9) is linked to the difference between the admis-
sible number of electrons and the magnetic flux. The
relation between these two quantities has been suggested
in [22],

N = σHNΦ + 2ςHχ(Σ). (11)

With the help of (11) we can write the non-dissipative
viscosity coefficient in (9) as

ηH =
1

4ν
(1− 2jν)N −

χ(Σ)

12
. (12)

We observe that the kinematic viscosity ~ηH/N receives

a universal finite size correction −χ(Σ)
12 . This is analo-

gous to the Casimir effect, where forces receive a volume
independent contribution. The origin of this correction
is the gravitational anomaly, as we demonstrate below.
The same arguments as in Sec.3 establish precise quan-

tization of the coefficient cH . Since the integral of the left
hand side of Eq. (9) over any closed 2-cycle in the moduli
space is a topological invariant and the volume of these
cycles in Weil-Petersson metric is a rational number [23],
the coefficients ςH and cH are precisely quantized. It is
more difficult to establish the units in which these coeffi-
cients are quantized, since the fundamental domain is an
orbifold.
We emphasize that deformations of the metric which

do not change the moduli, such as variations of the con-
formal factor gzz̄ (Weyl transformations) or diffeomor-
phisms do not lead to new precise transport coefficients.

5. Defining relation for holomorphic states The funda-
mental principle behind the precise quantization of the
adiabatic transport coefficients is the holomorphic prop-
erties of states on the lowest Landau level. These are
many-particle states built from one-particle states anni-
hilated by the operator

D† = g
−1/2
zz̄ (−i∂z̄ −Az̄ + jωz̄).

Here Az̄ and ωz̄ are complex components of the (non-
uniform) gauge field and the spin connection, and the
spin j is a parameter. We recall that the spin connection
is defined such that its exterior derivative is the (scalar)
curvature dω = 1

2RdV . Similarly the exterior derivative
of the gauge field dA = BdV is the magnetic field.
Thus the states are holomorphic functions of the co-

ordinates if the gauge field and the spin connection are
treated as adiabatic parameters. But there is more to it.
Unnormalized states are also holomorphic functions on
the space of adiabatic parameters, in our case the space
of complex structure moduli. Under a deformation of the
metric (4) the operatorD† deforms holomorphically with
µ as δD† = δµD and so do unnormalized wave-functions

ψr(z1, . . . , zN |µ, µ̄) =
1

√

Z[µ, µ̄]
Fr(z1, . . . , zN |µ), (13)

where the index r labels degenerate fractional QH-states,
for surfaces of genus g ≥ 1. Laughlin states on the torus
transform under a unitary representation of the appropri-
ate subgroup of the modular group, see e. g. [24]. Hence
the modular invariant normalization factor is the same
for each state. We assume this property to hold on higher
genus surfaces. Under this assumption the common nor-
malization factor, also known as a generating functional,
determines the adiabatic curvature

Ω =

∫

Σ

(

d̄d logZ
)

dV, (14)

where d = δµ δ
δµ and d̄ = δµ̄ δ

δµ̄ and similar for AB fluxes.

The formula (14) follows directly from the definition (3)
and the property (13).
The defining relation (14) is valid for any states with

the holomorphic dependence on complex parameters.
Such states occur in a broad scope of physical systems,
notably in conformal field theory, see e.g. [25, 26].

6. Generating functional Thus, in order to compute the
adiabatic curvature one needs to know the generating
functional Z. For the Laughlin states it has been ob-
tained in Ref. [6] (cf.[4, 5, 7]). It consists of two parts

logZ = logZH + F [B,R]. (15)

The first term is a bilinear combination of the gauge and
spin connections Az and ωz. The second term is a lo-
cal functional of the magnetic field, scalar curvature and
their derivatives.
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Assuming the transversal gauge ∂zAz̄+∂z̄Az = ∂zωz̄+
∂z̄ωz = 0, the result of [4–7] for the first term in (15) can
be written in the matrix form

logZH =
2

π

∫

(Az̄ ωz̄)

(

σH 2ςH
2ςH − cH

12

)(

Az

ωz

)

dzdz̄. (16)

Now we have all the necessary data to compute the adi-
abatic transport coefficients. We will focus on the geo-
metric transport.
Enforcing the condition (8), which excludes diffeomor-

phisms, the deformation of the spin connection is com-
posed of two distinct parts: the variation of the confor-
mal factor gzz̄, which deforms the curvature but keeps
the moduli fixed, and the deformations along the mod-
uli space. The variation of the generating functional (15)
with respect to the conformal factor is an exact one-form.
Hence it does not contribute to the adiabatic transport.
The only source for the adiabatic transport is the defor-
mation of the moduli. Under these deformations the spin
connection deforms as

d̄dωz =
i

2
∂z(δµ̄ ∧ δµ). (17)

Then formulas (17, 16) and (14) yield

Ω = −
i

2π

∫

Σ

(

ςHB −
cH
24
R
)

(δµ ∧ δµ̄ )dV. (18)

Restricting to constant magnetic field 2πNΦ/V and the
constant curvature 4πχ(Σ)/V , the result (9) immediately
follows.
The second term in (15) contributes only to the exact

part of the conductance 2-form and therefore is not rel-
evant for the precise adiabatic coefficients. Nevertheless
it can be computed for a model wave function [6], [27].

7. Linear response Nowwe explain the physical meaning
of transport coefficients in terms of the linear response
theory.
The meaning of (14), is that the Hessian of logZ with

respect to adiabatic parameters is a conductance matrix.
Consider, as an example, an adiabatic process where the
spin and the gauge connections evolve along an open path
A(t), ω(t), while the complex structure remains constant.
The matrix elements of the Hessian are the linear re-
sponse functions. We denote them as follows

σ =
π

2

δ2 logZ

δAzδAz̄
, 2ς =

π

2

δ2 logZ

δωzδAz̄
, −

c

12
=
π

2

δ2 logZ

δωzδωz̄
,

where we used a short cut notation σ(z, z′) =
π
2

δ2 logZ
δAz(z)δAz̄(z′) . The linear response functions include the

universal contribution from ZH in (15), related to the
transport coefficients, and also non-precise gradients cor-
rections from F in (15).
The adiabatic process A(t), ω(t) gives rise to an elec-

tric field Ez = Ȧz and its gravitational counterpart
Ez = 1

2 ω̇z. They in turn create an electric current Iz

and a shear stress πzz . In complex coordinates the stress
tensor reads πijdx

idxj = πzz(dz)
2 + πz̄z̄(dz̄)

2. Then

Iz = i
π

2

d

dt

δ logZ

δAz̄
, πzz= h

π

2
∂z
d

dt

δ logZ

δωz̄
. (19)

The universal parts of currents and stress are determined
by the term logZH in (15). For the Laughlin state they
follow from (19), (16) and (10)

Iz = i(νEz + Ez), πzz = −i
h

4ν
∂zIz −

h

12
∂zEz. (20)

These formulas extend the notion of the Hall conduc-
tance: the e.m. current is a sum of Lorentz forces caused
by the electric and gravitational fields. The last term
in (20) appears because the conductance matrix is non-
degenerate. It has the same origin as the finite size cor-
rection in (9) and is yet another manifestation of the
gravitational anomaly.
Using the continuity equation ρ̇+∇ · I = 0, we obtain

the extension of the Strěda formula ρ = 1
2π (σHB+ ςHR)

connecting the density of electrons to the magnetic field
and curvature. Integrating the density with the help of
the Gauss-Bonnet formula

∫

Σ
R = 4πχ(Σ) we obtain the

relation (11) connecting ςH to the number of particles
and the number of fluxes.

8. QH-state as a string of vertex operators As we have
seen, the generating functional (16) is the central object
of the theory of transport in QH-states. In the remaining
part of the paper we outline one of available methods to
obtain it. The method is based on the construction of
Ref. [28] where QH-states are expressed by a string of N
vertex operators in a relevant field theory, coupled to the
magnetic field. This approach has been recently devel-
oped in [7] (see also [6]). We illustrate this method for
the Laughlin spin j-states, defined in [6, 7], and assume
no AB-fluxes.
We look for a field theory which represents the unnor-

malized part of the Laughlin wave function. Since this
state consists of only one type of particles, it is described
by one Gaussian field Φ coupled to the magnetic field and
curvature

S[Φ]=
σH
8π

∫

(∇Φ)2dV +
i

2π

∫

(σHB+ ςHR)Φ dV, (21)

where the coupling constants σH , ςH are fixed by the re-
quirements:
(i) An electron is represented by a holomorphic pri-

mary operator V (z) with electric charge 1. Identification
of the vertex operator with eiΦ(z,z̄) = V (z)V (z̄) fixes the
coupling to the gauge field.
(ii) The OPE of two operators should satisfy

V (z1)V (z2) ∼ (z1 − z2)
m as z1 → z2, where m = 1/ν.

This condition determines σH = ν in (21).
(iii) In the spin-j Laughlin state, a particle has the

conformal spin j [6, 7]. This state is a generalization of
the usual Laughlin state, for which j = 0. Since the state
is holomorphic, its conformal dimension also equals to



5

j. We recall that the conformal dimension of the vertex
operator eiαΦ with respect to the action (21) is

hα =
α

2σH
(α − 4ςH).

Choosing α = 1 and h1 = j we obtain ςH = 1
4 (1− jν) as

in (10). This condition fixes the parameters of the spin-j
Laughlin state. The central charge of such theory

cH = 1− 48
ς2H
σH

is given by (10).

Now let us compute the unnormalized correlation func-
tion of a string of vertex operators eiΦ, following [7]. We
reproduce the unnormalized Laughlin wave-function (13)

1

ZG

∫

[

N
∏

i=1

eiΦ(zi,z̄i)

]

e−S[Φ]DΦ = |F (z1, . . . , zN)|2 (22)

For example, on the sphere the state reads

F (z1, . . . , zN)=

N
∏

i<j

(zi−zj)
me

1

2

∑
N
i=1

Q(zi,z̄i), (23)

where the potential Q is such that ∂z̄Q = 2i(Az̄ − jωz̄).

The factor ZG in (22) is

ZG = [Det(−∆)]−
1

2 e
− 2

πσH

∫
|(σHAz+2ςHωz)|

2dzdz̄
, (24)

where Det(−∆) is the spectral determinant of the
Laplace operator. The next step is to integrate over posi-
tions of particles and use the relation

∫

|F |2dV1 . . . dVN =

Z, where Z is the normalization factor in (13). We de-

note eF =
∫ [∫

eiΦ(z,z̄)dV
]N

e−S[Φ]DΦ. Then the inte-
gration over the coordinates yields

eF = Z · ZG. (25)

To complete the argument we notice that the l.h.s. of (25)
depends locally on the curvature and does not depend on
moduli. Comparing to (15) we obtain the main relation

Z−1
H = ZG. (26)

It remains to recall the value of the spectral determinant
of the Laplace operator in (24). Up to metric indepen-
dent terms it is given by the formula of Polyakov [29]

log Det(−∆) = −
1

3π

∫

|ωz|
2dzdz̄. (27)

It represents the effect of the gravitational anomaly. This
term corresponds to 1 in the formula for cH (10) and
is responsible for the finite size correction to the non-
dissipative viscosity (12). The result for the generating
functional of QH states (16) follows from (26).
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