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Counterfactual computation (CFC) exemplifies the fascinating quantum process by which the
result of a computation may be learned without actually running the computer. In previous experi-
mental studies, the counterfactual efficiency is limited to below 50%. Here we report an experimental
realization of the generalized CFC protocol, in which the counterfactual efficiency can break the 50%
limit and even approach unity in principle. The experiment is performed with the spins of a nega-
tively charged nitrogen-vacancy (NV) color center in diamond. Taking advantage of the quantum
Zeno effect, the computer can remain in the not-running-subspace due to the frequent projection
by the environment, while the computation result can be revealed by final detection. The counter-
factual efficiency up to 85% has been demonstrated in our experiment, which opens the possibility
of many exciting applications of CFC, such as high efficient quantum integration and imaging.

PACS numbers: 03.67.Ac 76.30.Mi

Quantum physics has demonstrated its profound power
in various applications, including secure quantum com-
munication [1–3], precise quantum metrology [4–6], and
exponentially fast quantum algorithms [7, 8]. As an ex-
otic feature of quantum physics, CFC can learn the result
of the computation without actually running the com-
puter [9–11]. A figure of merit for the assessment of
CFC is the counterfactual efficiency, which is the proba-
bility of accurately deducing a computing result ‘for free’.
However, CFC controlled by a quantum switch has only
a maximum counterfactual efficiency of 50% to learn the
result ‘for free’, which limits its practical application [12–
14]. Nevertheless, generalized CFC can go beyond this
limit and achieve counterfactual efficiency approaching
unity [10].

Consider the task of using a quantum computer to
characterize a black box, which carries out one of the uni-
taries from the set {Ur}, with r = 1, 2, · · · ,K. Suppose
the unitary Ur evolves trivially in a subspace, identified
as the ‘off’-subspace associated with Ur,

Hoff,r = span {|ψ〉 : Ur |ψ〉 = |ψ〉} ,

The subspace orthogonal to Hoff,r is the ‘on’-subspace
of Ur. Since the computer has trivial evolution in the
off-subspace, one might expect that the computer has to
evolve, at least partially, into the non-trivial on-subspace
to learn about the black-box unitary. CFC, as an ex-
otic manifestation of quantum physics, opens the possi-
bility of learning about the black-box unitary Ur, while
maintaining the computer in its off-subspace [9, 10]. An
important figure-of-merit of CFC is the counterfactual
efficiency, defined as the average probability of learning

the results without runing the computer,

η =
1

K

K∑
r=1

pr,

where pr is the probability of learning the result Ur
counterfactually (i.e., maintaining the system in Hoff,r

throughout the entire process). The above definition
of generalized CFC extends the choices of unitary op-
erations investigated in the CFC literature [9], which
often assumes that the black-box unitary Ur has the
form of controlled-Ũr between the quantum switch (S)
and the output register (R). As shown in [10, 15], CFC
with controlled-Ũr has a limited counterfactual efficiency
η ≤ 50%. Hence, it is crucial to extend the choice of Ur
to beyond the class of controlled-Ũr in order to achieve
η above 50% or even approaching unity [10, 15].

To illustrate generalized CFC with high efficiency, we
consider a quantum computer consisting of a (K + 1)-
level quantum switch {|0〉S , |1〉S , · · · , |K〉S} and a two-
level register {|0〉R , |1〉R}. The black box has K possible
unitaries:

Ur |i〉S |j〉R =

{
|i, j〉 if i ∈ {0, r} (in the off-subspace)

|i, 1− j〉 if i 6= 0, r (in the on-subspace)

(1)
with r = 1, · · · ,K. Note that the off-subspace depends
on the value of r, which is the distinguished feature that
yields the breakthrough of counterfactual efficiency com-
pared to the controlled-Ũr CFC [15]. The goal is to
identify the value of r while confining ourselves to its
off-subspace during the computation. As illustrated in
Fig. 1(a), the generalized CFC scheme with K = 2 has
the following procedure: (i) initialize the computer in
the common ‘off’ state |0〉S |0〉R for both U1 and U2; (ii)
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perform a controlled-Tθ operation

Tθ ⊗ |0〉R 〈0|+ IS ⊗ |1〉R 〈1| , (2)

which rotates the switch with Tθ conditioned on register
state |0〉R:

Tθ =

 a −b −b
b c −d
b −d c

 , (3)

where a = cos θ√
2
, b = 1√

2
sin θ√

2
, c = cos2 θ

2
√
2
, d =

sin2 θ
2
√
2
, and small rotation angle θ = π

N with N � 1;

(iii) apply the black-box unitary Ur to the computer;
(iv) measure the register in {|0〉R , |1〉R} basis; (v) if the
register is |1〉R, terminate the computation as a failure;
otherwise, repeat the procedure from step (ii); (vi) after
N repetitions, measure the switch in {|0〉S , |1〉S , |2〉S}
basis.

An intuitive explanation of the whole procedure is pro-
vided in terms of optical circuits, as shown in Fig. 1(b).
The switch is illustrated by the photon path while the
register is illustrated by the transparent or opaque ob-
ject putted on the photon path. The three-arm inter-
ferometer represents the Tθ operation, and the choice
of Ur means the blocking of r-th photon path. The
opaque object (black box) also acts as a projective
measurement (PM). As one can show inductively, after
the n-th repetition, the computer will be in the state
|ψn〉 ≈ cos nθ2 |0, 0〉 + sin nθ

2 |r, 0〉 with a failure proba-
bility O

(
1
N2

)
and the accumulative failure probability is

O
(
n
N2

)
. After N repetitions, the system will reach the

target state |r, 0〉 with a total failure probability O
(

1
N

)
over all repetitions; and the measurement of the switch
will unambiguously identify the value of r. Fig. 1(c) also
gives the numerical calculation of the populations of the
switch states ({|0〉S , |1〉S , |2〉S}) for different repetition
times n. When n = N , the switch will be in {|r〉S}
if the procedure have not been terminated. Moreover,
throughout the entire computation, the system is always
in the off-subspace associated with Ur, except for a van-
ishingly small failure probability O

(
1
N

)
of leakage into

the on-subspace resulting in termination of the compu-
tation. Hence, the probability of learning the result coun-
terfactually is pr = 1 − O

(
1
N

)
for r = 1, 2. Therefore,

the efficiency of the generalized CFC scheme is

η =
p1 + p2

2
= 1−O

(
1

N

)
, (4)

which approaches unity for large N . As shown in the
inset of Fig. 1(c), even for a finite number N = 20, the
generalized CFC scheme can already have a high effi-
ciency η ≈ 94%, which beats the 50% limit for all CFC
schemes with controlled-Ũr.

The experimental demonstration is performed on a sin-
gle negatively charged NV center in diamond, of which
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FIG. 1. (Color online). Generalized CFC. (a) Quantum cir-
cuit of the generalized CFC scheme, with K possible black-
box unitaries as defined in Eq.(1). (b) Photonic analog of
the K = 2 quantum circuit, with a photon passing through a
series of cascaded three-arm interferometers (blue ovals) for
Tθ operation. Different configurations of transparent path-
ways (empty boxes) and absorbers (black boxes) are asso-
ciated with different choices of Ur. (c) For small θ = π

20
,

the simulated populations of |0〉S |0〉R (red circle), |1〉S |0〉R
(black square), |2〉S |0〉R (blue triangle) as a function of the
repetition number n, for r = 1, 2. Pink dotted line indicates
the optimized repetition number N = π/θ where the highest
counterfactual efficiency is achieved. (d) The counterfactual
efficiency η versus the optimized repetition number N , with
θ = π/N . For large N , η approaches 100%.

the structure and energy levels are shown in Fig. 2(a).
With long coherence time at room temperature [22], the
NV electron spin (denoted by ’e’ hereinafter) can be ini-
tialized and measured optically [23, 24], reliably con-
trolled with microwave (MW) pulses [25, 26], and co-
herently coupled to nearby nuclear spins or other remote
spins [27–30]. Hence, it is one of the most promising can-
didates for quantum information processing [25, 30, 31].
With a static magnetic field B0 ≈ 507 G applied along
the NV axis, the 14N nuclear spin (denoted by ’n’ here-
inafter) can be polarized using dynamic polarization
technology [32]. The nuclear spins can also be manip-
ulated with radiofrequency (RF) pulses [33]. As shown
in Fig. 2(b,c), the energy shift induced by hyperfine in-
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FIG. 2. (Color online). Experimental system. (a) Struc-
ture and energy levels of the NV center. (b) Relevant en-
ergy levels of the NV electron spin with {|0e〉 , |−1e〉} for
the two-level register

{
|0〉R , |1〉R

}
, and the nuclear spin

with {|0n〉 , |1n〉 , |−1n〉} for the three-level quantum switch{
|0〉S , |1〉S , |2〉S

}
. (c) Pulse sequence to control the quantum

switch. RF1 and RF2 pulses represent resonant transitions
associated with |0n〉 ↔ |±1n〉, respectively. (d) RF induced
Rabi oscillation of the nuclear spin. Red circle, black square,
and blue triangle represent |0n〉 , |1n〉, and |−1n〉 respectively.
Solid curves are the fittings. Error bars (±1 s.d.) induced
by the photon shot noise are smaller than the symbols as
the sequence is repeated several million times to get enough
photons.

teraction and Zeeman effect makes selective MW and
RF control possible. Two resonant RF pulses are ap-
plied simultaneously to realize double interference be-
tween |0n〉 and |1n〉, which is a basic operation in our
protocol. Then the state is measured using state tomog-
raphy [15]. Fig. 2(d) gives the measured populations of
|0n, 0e〉, |1n, 0e〉, and |−1n, 0e〉 during the double interfer-
ence. With the above control and readout, the nitrogen
nuclear spin {|0n〉 , |1n〉 , |−1n〉} acts as a three-level quan-
tum switch {|0〉S , |1〉S , |2〉S}, while the NV electron spin
{|0e〉 , |−1e〉} acts as a two-level register {|0〉R , |1〉R} for
the generalized CFC scheme.

The pulse sequence shown in Fig. 3(a) gives the im-
plementation of the generalized CFC scheme. At first, a
4 µs 532nm laser pulse followed by an RF π pulse ini-
tializes the state of the system to |0〉S |0〉R (i.e., |0n, 0e〉).
Then, two short RF pulses realize the controlled-Tθ rota-
tion. After that, a selective MW π pulse implements the
black-box unitary Ur, which flips the register (electron
spin) conditioned on the switch (nuclear spin) state |2〉S
(i.e., | − 1n〉) for r = 1 and |1〉S (i.e., |1n〉) for r = 2.
Instead of applying the PM to the register which is dif-
ficult for our room-temperature experiment, we employ
the fast decoherence of the electron spin to perform an
effective ensemble PM to the register, by simply waiting

Laser

RF1

RF2

MW

T

T

rX

N

PM

To
m

o
gr

ap
h

y

π

(a)

(b) (c)

0 10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

 

 

N

Ef
fi

ci
e

n
cy r = 1

r = 2

0.0

0.5

1.0

0 20 40 60 80

0.0

0.5

1.0  

 

 

 

 

n

Po
p

u
la

ti
o

n

r = 1

r = 2

FIG. 3. (Color online). Counterfactual efficiency. (a) Pulse
squences for the generalized CFC scheme, with Ur imple-
mented by a selective MW π pulse resonant with the tran-
sition conditioned on the switch (nuclear spin) state |2〉S (i.e.,
| − 1n〉) if r = 1, or |1〉S (i.e., |1n〉) if r = 2. (b) For
fixed θ = π/20, measured populations of |0〉S |0〉R (red cir-
cle), |1〉S |0〉R (black square), and |2〉S |0〉R (blue triangle) as
a function of the repetition number n. Solid curves show
the simulated results. Pink dotted line indicates the highest
counterfactual efficiency achieved with optimized repetition
number N = π/θ = 20. Error bars (±1 s.d.) are smaller than
the symbols. (c) For varying θ = π/N , the measured coun-
terfactual efficiency η versus the optimized repetition num-
ber N . Green solid curve shows the simulated efficiency with
practical imperfections while the dotted curve shows the ideal
efficiency the same as Fig. 1(d). The dashed line shows the
50% limit. All error bars (±1 s.d.) are induced by the photon
shot noise.

for a time significantly longer than the electron spin co-
herence time. During this time, the superposition state
of the register will quickly relax to a mixed state, while
the switch coherence remains almost unchanged since the
coherence time of the nuclear spin is much longer than
that of the electron spin. The only difference from the
genuine PM is that we don’t block the process if the com-
puter is triggered, but this will only marginally change
the final output state with less than 1% difference in
the measured population [15]. Finally, the populations
of |0〉S |0〉R, |1〉S |0〉R, and |2〉S |0〉R (i.e., |0n, 0e〉, |1n, 0e〉,
and |−1n, 0e〉) are measured using state tomography [15].

The final output state depends on both the black-box
unitary Ur and the repetition number n. For r = 1
(r = 2), the population transfer from |0〉S to |2〉S (|1〉S)
is inhibited by quantum Zeno effect, and the register re-
mains in |0〉R. As shown in Fig. 3(b), for the fixed ro-
tation angle θ = π/20, the switch state evolves in the
off-subspace spanned by {|0〉S |0〉R , |r〉S |0〉R}, and oscil-
lates between |0〉S |0〉R and |r〉S |0〉R as n increases. For
the rotation angle θ = π/N , after n = N repetitions the
population of the target output state |r〉S |0〉R becomes
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the largest (pink dotted line). The counterfactual effi-
ciency η is equal to this largest population of |r〉S |0〉R
averaged over r = 1, 2. As plotted in Fig. 3(c), the coun-
terfactual efficiency depends on N , with the maximum
achieving 85% for N ≈ 17. The decay of the efficiency is
mainly due to the accumulation of pulse imperfection for
large N [15]. The uncertainty of the efficiency is caused
by not only photon shot noise but also other experimen-
tal imperfection, including ensemble PM, imperfect state
tomography, and unstable external magnetic field. And
the corresponding uncertainties of efficiency are less than
1%, 6%, and 2% repectively[15], so the estimated total
uncertainty of the counterfactual efficiency is less than
9%. Our generalized CFC scheme has counterfactual ef-
ficiency η = 85%, well above the 50% limit.

The generalized CFC scheme can be extended to dis-
tinguish a black box with K + 1 possible unitaries Ur
as defined in Eq.(1) for r = 0, 1, 2, · · · ,K, which can
be achieved using a (K + 1)-dimensional switch with the
state space {|0〉S , |1〉S , · · · , |K〉S} [10, 15]. After the
repetitive interrogations, the switch will end up in the
state |r〉S. It provides a powerful quantum interrogation
protocol to solve practical problems. Suppose we have an
object consisting of K pixels (labeled by r = 1, 2, · · · ,K)
with all pixels being opaque except for the r-th pixel be-
ing transparent (if r = 0, no pixel is transparent). The
generalized CFC scheme can use just one photon to learn
about the value of r without having the photon blocked
by the object. This protocol can be potentially used for
low-light-level imaging technology [34] which is very de-
manding for various realistic situations in which the light
itself may destroy or modify the illuminated materials.
The applications include, for example, biological imag-
ing of Green Fluorescent Protein that might be bleached
under strong laser beam, high-resolution imaging with
UV light that may kill the cell, or even X-ray imaging
that may be harmful to human body. The concept pro-
posed here may benefit these applications with a safe (one
photon-level) yet efficient (successful rate approaches 1)
imaging method.

A imaging concept similar to the above is the
‘interaction-free imaging’ proposed and demonstrated by
A. G. White et al [35]. The method is based on the
interaction-free quantum measurement [36, 37] (closely
related to the generalized CFC scheme here), which uses
a two-arm interferometer to query the presence or ab-
sence of the absorbing object in one of the arms. Al-
though that imaging method can also reduce the amount
of photons being absorbed by the object compared with
conventional methods, it still requires at least O (K) pho-
tons to find the value r due to the raster scanning manner
(imaging pixel by pixel). The generalized CFC approach
pushes this limit to only one photon.

In conclusion, we use a single NV center in diamond
to demonstrate the generalized CFC scheme, which can
learn the information of a black-box unitary Ur with the

quantum computer always in its off-subspace. Our im-
plementation has demonstrated high counterfactual effi-
ciency up to 85%, well above the 50% limit for the con-
ventional CFC scheme. This opens up many exciting
opportunities of using generalized CFC for future appli-
cations.
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