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Spin systems with frustration and disorder are notoriously difficult to study both analytically and numerically.

While the simulation of ferromagnetic statistical mechanical models benefits greatly from cluster algorithms,

these accelerated dynamics methods remain elusive for generic spin-glass-like systems. Here we present a

cluster algorithm for Ising spin glasses that works in any space dimension and speeds up thermalization by at

least one order of magnitude at temperatures where thermalization is typically difficult. Our isoenergetic cluster

moves are based on the Houdayer cluster algorithm for two-dimensional spin glasses and lead to a speedup

over conventional state-of-the-art methods that increases with the system size. We illustrate the benefits of the

isoenergetic cluster moves in two and three space dimensions, as well as the nonplanar Chimera topology found

in the D-Wave quantum annealing machine.

PACS numbers: 75.50.Lk, 75.40.Mg, 05.50.+q, 64.60.-i

A plethora of problems across disciplines map onto spin-

glass-like Hamiltonians [1]. Despite decades of intense ana-

lytical and numerical scrutiny, a deep understanding of these

paradigmatic models of disordered systems remains elusive.

Given the inherent difficulties of studying these Hamiltonians

analytically beyond mean-field theory as well as the continu-

ous increase of computer power, progress in this field has ben-

efited noticeably from numerical studies. The development

of efficient Monte Carlo methods such as parallel tempering

[2] and population annealing [3] has helped in understanding

these systems at a much deeper level, however, most numeri-

cal studies are still plagued by corrections to finite-size scaling

due to the small system sizes currently available [4].

In contrast, simulations of spin Hamiltonians without dis-

order and frustration are comparably simple: Ferromagnetic

systems have greatly benefited from the development of clus-

ter algorithms [5, 6] that help in overcoming critical slowing

down close to phase transitions. Therefore, the holy grail

of spin-glass simulations is to introduce accelerated cluster

dynamics that improve upon the benefits of efficient simula-

tion methods such as population annealing or parallel tem-

pering Monte Carlo. In 2001 Houdayer introduced a semi-

nal rejection-free cluster algorithm tailored to work for two-

dimensional Ising spin glasses [7]. The method updates large

patches of spins at once, therefore effectively randomizing the

configurations and efficiently overcoming large barriers in the

free-energy landscape. Furthermore, the energy of the system

remains unchanged when performing a cluster move. This

means that the numerical overhead is very small, because the

rejection rate is zero and there is no need to, for example,

compute any random numbers for a cluster update. The use

of these cluster moves made it possible to obtain a speedup

of at least one order of magnitude in three space dimensions

and several orders of magnitude in systems below three space

dimensions, therefore allowing us to simulate considerably

larger system sizes.

While cluster algorithms such as Swendsen-Wang and

Wolff [5, 6] work well for ferromagnetic systems in any space

dimension because the clusters reflect the spin correlations in

the system, this is not the case for algorithms that build clus-

ters like the Houdayer cluster algorithm. In this case the clus-

ters do not reflect overlap correlations [8, 9] and cluster up-

dates only have an accelerating effect on the dynamics if the

clusters do not span the entire system or are comprised of sin-

gle spins. This is the case either when temperatures are close

to zero (small clusters), or when the underlying geometry of

the problem has a percolation threshold below 50% – as is

the case in three space dimensions. Updating such a system-

spanning cluster amounts to swapping out both replicas, thus

not randomizing the configurations. This means that while

the method works in principle, it does not really provide any

simulational benefit. As such, Houdayer cluster moves work,

in principle, only for models where the percolation threshold

is above 50%, as is the case in two-dimensional Ising spin-

glass Hamiltonians. One way to remedy this situation is to

increase the percolation threshold artificially, e.g., by diluting

the lattice [10]. However, this is often not desirable and highly

dependent on the problem to be studied.

Here we show that Houdayer-like cluster moves can be

applied to spin systems on topologies where the percolation

threshold is below 50%, provided that the interplay of tem-

perature and frustration prevents clusters from spanning the

whole system. We therefore introduce isoenergetic cluster

moves for spin-glass-like Hamiltonians in any space dimen-

sion. These rejection-free cluster moves accelerate thermal-

ization by several orders of magnitude even for systems with

space dimensions larger than 2. We show that the inherent

frustration present in spin-glass Hamiltonians prevents clus-

ters from spanning the whole system for temperatures below

the characteristic energy scale of the problem. As such, spin-

glass simulations can be sped up considerably in the hard-to-

reach low-temperature regime of interest in many numerical

studies.

The fact that the isoenergetic cluster moves are rejection
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free and leave the energy of the system unchanged is also

of great importance to any heuristic based on Monte Carlo

updates to compute ground-state configurations of spin-glass-

like Hamiltonians. For example, the convergence of simulated

annealing [11] can be considerably improved by adding isoen-

ergetic cluster moves at each temperature step. Because the

moves change the spin configurations but leave the energy of

the system intact, the approach has the potential to “tunnel”

through energy barriers, thus overall improving convergence.

We first introduce the benchmark model, followed by a

short description of the Houdayer cluster algorithm and an

outline of our isoenergetic cluster algorithm. Results in two

and three space dimensions, as well as on the nonplanar

Chimera topology [12] are presented.

Benchmark model and observables.— The Hamiltonian

of a generic Ising spin glass is defined by H =
∑N

i6=j Jijsisj ,

where si ∈ {±1} represent Ising spins andN is the total num-

ber of spins. In this study the interactionsJij are selected from

a Gaussian distribution with mean zero and variance J2 = 1.

Because we are only interested in highlighting the improved

thermalization by adding isoenergetic cluster moves, we mea-

sure the average energy per spin defined via [〈H〉]/N , as well

as the link overlap qℓ = (1/Nb)
∑N

ij s
(1)
i s

(1)
j s

(2)
i s

(2)
j . Here,

〈· · · 〉 represents a Monte Carlo average, the superscripts rep-

resent two replicas of the system, [· · · ] an average over the

disorder, and Nb is the number of bonds in the system. Using

Gaussian disorder, one can equate the internal energy per spin

to the internal energy computed from the link overlap [13],

E(qℓ), i.e.,

E(qℓ) = −
J2

T

Nb

N
(1 − qℓ). (1)

To test that the system is thermalized, we thus study the time-

dependent behavior of

∆ = [〈E(qℓ)〉 − 〈H/N〉]. (2)

When ∆ → 0, the bulk of the disorder instances is thermal-

ized [14]. Simulation parameters are listed in Table I

Reminder: Houdayer cluster algorithm.— The Houdayer

cluster algorithm (HCA) [7] is an efficient algorithm to study

two-dimensional Ising spin glasses at low temperatures where

thermalization is slow. It is similar to replica Monte Carlo

[15], but with the difference that both replicas are at the same

temperature. By allowing large cluster rearrangements of con-

figurations, the HCA improves thermalization by efficiently

tunneling through configuration space.

The algorithm works as follows: In the HCA, two indepen-

dent spin configurations (replicas) are simulated at the same

temperature. The site overlap between replicas (1) and (2),

qi = s
(1)
i s

(2)
i , is calculated. This creates two domains in q-

space: sites with qi = 1 and qi = −1. Clusters are defined

as the connected parts of these domains in q-space. One then

randomly chooses one site with qi = −1 and builds the cluster

by adding all the connected spins in the domain with proba-

bility 1. When no more spins can be added to the cluster in

q-space, the spins in both replicas that correspond to cluster

sites are flipped with probability 1, irrespective of their ori-

entation. The method can be implemented in a very efficient

way because sites are added to the cluster with probability 1
and the cluster updates are rejection free. To ensure ergod-

icity, the cluster move is combined with standard single-spin

Monte Carlo updates. Summarizing, one simulation step us-

ing the HCA consists of the following steps:

1. Perform one Monte Carlo sweep (N Metropolis up-

dates) in each replica.

2. Perform one Houdayer cluster move.

3. Perform one parallel tempering update for a pair of

neighboring temperatures.

Note that the last step is not necessary; however, the com-

bination of HCA moves and parallel tempering (PT) updates

improves thermalization considerably and represents the stan-

dard modus operandi.

In theory, the efficiency of the HCA depends strongly on the

percolation threshold of the desired topology to be simulated.

Because spins are added to the cluster with probability 1, if the

percolation threshold of the studied lattice is below 50%, then

the cluster might span the entire system and an update will

not yield a new configuration. This is the reason why HCA

is claimed to only work in two space dimensions [7] where

the percolation threshold is above 50% (see also Fig. 1, top

panel).

Isoenergetic cluster algorithm.— Our proposed isoener-

getic cluster moves are closely related to the HCA. We begin

by simulating two replicas with the same disorder at multiple

temperatures. The cluster moves alone are not ergodic, so,

again, these must be combined with simple Monte Carlo up-

dates. One simulation step using isoenergetic cluster moves

consists of the following steps:

1. Perform one Monte Carlo sweep (N Metropolis up-

dates) in each replica.

2a. If the number of cluster sites with qi = −1 is greater

than N/2, then all the spins in one of the configura-

tions can be flipped (because of spin-reversal symme-

try), thus reducing the cluster size while leaving the en-

ergy unchanged.

2b. Perform one Houdayer cluster move for all tempera-

tures T . J .

3. Perform one parallel tempering update for a pair of

neighboring temperatures.

The main difference thus lies in applying cluster moves to a

carefully-selected set of temperatures where the isoenergetic

cluster moves (ICMs) are efficient (steps 2a & 2b) because

clusters do not percolate, as well as reducing cluster sizes

and thus the numerical overhead by exploiting spin-reversal
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symmetry (step 2a) [16, 17]. For example, in the case of the

Chimera lattice the overhead of ICM over PT is approximately

25% and roughly independent of the system size for the stud-

ied N . However, the overhead for HCA over PT is at least

50% and grows with increasing system size.

Figure 1 shows the fraction of spins with negative overlap

(i.e., the fraction of potential cluster sites) as a function of

temperatureT for different system sizes N and on three differ-

ent topologies. The top panel of Fig. 1 shows data in two space

dimensions where the percolation threshold is pc ≈ 0.592
[18] (solid horizontal line). As such, for all temperatures sim-

ulated, the fraction of cluster sites is below the percolation

threshold and saturates at 50% for T → ∞. This means

that isoenergetic cluster updates are efficient for all temper-

atures studied because the clusters never percolate. Naively,

one would expect that in higher space dimensions clusters per-

colate for all T . This is, however, not the case due to the frus-

tration present in spin glasses, as can be seen for the Chimera

topology (center panel of Fig. 1) or in three space dimensions

(bottom panel of Fig. 1). For increasing system size the frac-

tion of cluster sites converges to a limiting curve that crosses

the percolation threshold (horizontal solid lines) at approxi-

mately T ≈ J = 1. This means that for all T & J clusters

percolate and the cluster updates are just numerical overhead

without any advantage to the simulation. However, for T . J
the fraction of cluster sites lies below the percolation thresh-

old. This means that performing cluster moves in this tem-

perature regime should improve thermalization. Note that it is

a coincidental property that for three-dimensional Ising spin

glasses Tc ∼ 1 [19], i.e., that cluster moves can be applied to

any T . Tc [20].

When the interactions Jij are drawn from a Gaussian dis-

tribution, the ground state is unique. As can be seen in Fig. 1,

the fraction p of spins potentially in a cluster also approaches

zero for T → 0, i.e., both replicas are in the ground state for

low enough T . Therefore, the cluster is composed of no sites

or the entire lattice. In the case of disorder distributions that

yield a highly-degenerate ground state, such as it is the case

for bimodal disorder, it is possible to continue to have clus-

ters at zero temperature. It is thus possible to efficiently hop

around the ground-state manifold by applying cluster moves

to low-lying or even zero-temperature states. We do empha-

size, however, that if clusters are too small, then the isoener-

getic cluster moves also become ineffective. Therefore, plot-

ting the p as done in Fig. 1 is essential in determining the

efficiency and applicability of the method.

Benchmarking results.— Figure 2 shows ∆ [Eq. (2)] as

a function of Monte Carlo time (measured in lattice sweeps)

t = 2b. The top panel of Fig. 2 shows data in two space

dimensions for simulations using isoenergetic cluster moves

(PT+ICM) and vanilla parallel tempering (PT) Monte Carlo

for N = 1024 spins at T = 0.212. Once ∆ ∼ 0, we deem the

system thermalized. Clearly, the inclusion of cluster moves—

as can also be expected from the results of Houdayer—show

an improved thermalization. The center panel of Fig. 2 shows

data on the Chimera topology with N = 1152 spins and
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FIG. 1: (Color online) Top panel: Fraction of spins p of poten-

tial cluster sites as a function of temperature T for different system

sizes N in two space dimensions (2D). The horizontal line repre-

sents the percolation threshold of a two-dimensional square lattice,

i.e., pc ≈ 0.592 [18]. Because p → 0.5 for T → ∞, for all T

clusters do not percolate, which is why the HCA is efficient in two-

dimensional planar geometries. Center panel: p as a function of tem-

perature T for different system sizes N on the Chimera topology.

The horizontal line represents the percolation threshold of the non-

planar Chimera topology, namely pc ≈ 0.387 computed here using

the approach developed in Ref. 21 (see supplement). For T & J = 1

clusters percolate and cluster updates provide no gain. Bottom panel:

p as a function of temperature T for different system sizes N in three

space dimensions (3D). The horizontal line represents the percolation

threshold of the three-dimensional cubic lattice (pc ≈ 0.311 [22]).

For T & J = 1 clusters percolate. In all panels, error bars are com-

puted via a jackknife analysis over configurations and are smaller

than the symbols.
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FIG. 2: (Color online) Top panel: ∆ [Eq. (2)] as a function of

simulation time t = 2
b measured in Monte Carlo sweeps in two

space dimensions (2D) for N = 1024 and T = 0.212. Simula-

tions using vanilla PT thermalize at at least 225 Monte Carlo sweeps,

whereas with the addition of ICMs thermalization is reduced to ap-

proximately 2
16 Monte Carlo sweeps. This means approximately

two orders of magnitude improvement. Center panel: ∆ as a func-

tion of simulation time t = 2
b measured in Monte Carlo sweeps for

an Ising spin glass on Chimera with N = 1152 spins at T = 0.212.

Simulations using PT thermalize at approximately 2
25 Monte Carlo

sweeps, whereas the addition of ICMs reduces thermalization to 2
18

Monte Carlo sweeps. Again, approximately two orders of magnitude

speedup. Bottom panel: ∆ as a function of simulation time t = 2
b

measured in Monte Carlo sweeps in three space dimensions (3D) for

N = 1728 and T = 0.42 ∼ 0.43Tc. Using standard PT, the sys-

tem thermalizes approximately after 223 Monte Carlo sweeps. This

time is reduced to ∼ 2
20 Monte Carlo sweeps when ICMs are added.

In all panels, error bars are computed via a jackknife analysis over

configurations.

TABLE I: Parameters of the simulation in two space dimensions

(2D), three space dimensions (3D), and on the Chimera (Ch) topol-

ogy. For each topology simulated and system sizes N , we compute

Nsa disorder instances and measure over 2
b Monte Carlo sweeps

(and isoenergetic cluster moves) for each of the 2NT replicas. Tmin

[Tmax] is the lowest [highest] temperature simulated, and NT is the

total number of temperatures used in the parallel tempering Monte

Carlo method. Isoenergetic cluster moves only occur for the lowest

Nc temperatures simulated (determined from Fig. 1).

N Nsa b Tmin Tmax NT Nc

2D 256, 576, 1024 10
4

22 0.2120 1.6325 30 30

Ch 128, 288, 512, 800, 1152 10
4

22 0.2120 1.6325 30 19

3D 64, 216, 512, 1000, 1728 1.5 104 23 0.4200 1.8000 26 13

T = 0.212, where the HCA is not expected to show any im-

provement over PT due to pc < 0.5. As can be seen, our ICM

clearly improve thermalization in comparison to PT by at least

two orders of magnitude; an amount that grows with increas-

ing system size. Finally, the bottom panel of Fig. 2 shows

∆ as a function of simulation time in three space dimensions

with N = 1728 spins and T = 0.42 ≪ Tc. Although not

as impressive as for the Chimera topology, we see a speedup

of approximately one order of magnitude — an amount that

again grows with increasing system size.

Finally, Fig. 3 shows the ratio of the thermalization time

using PT and using PT+ICM for different topologies at the

lowest simulation temperature (see Tab. I) as a function of the

system size N . In all cases, the speedup increases with in-

creasing system size, therefore illustrating that the addition of

isoenergetic cluster moves greatly improves thermalization.
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FIG. 3: (Color online) Ratio between the approximate average ther-

malization time of PT and PT+ICM for different topologies at the

lowest simulation temperature (see Tab. I) as a function of system

size N . In all cases the speedup increases with increasing system

size. Note that thermalization times have been determined by eye.

Summary.— We have presented a rejection-free cluster al-

gorithm for spin glasses in any space dimension that greatly

improves thermalization. By restricting Houdayer cluster

moves to temperatures where cluster percolation is hampered

by the interplay of frustration and temperature, we are able
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to extend the Houdayer cluster algorithm for two-dimensional

spin glasses to any topology/space dimension. Our standard

implementation of the cluster updates represents only a minor

overhead [17] compared to the thermalization time speedup

obtained from the isoenergetic cluster moves – a speedup that

increase with the system size [23].
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