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We study dynamical mass generation and the resultant helical spin orders in topological Dirac and Weyl

semimetals, including the edge states of quantum spin Hall insulators, the surface states of weak topological

insulators, and the bulk materials of Weyl semimetals. In particular, the helical spin textures of Weyl semimetals

manifest the spin-momentum locking of Weyl fermions in a visible manner. The spin-wave fluctuations of the

helical order carry electric charge density, therefore, the spin textures can be electrically controlled in a simple

and predictable manner.
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Relativistic electrons governed by the Dirac equation had

been thought to be remote from condensed matter physics.

The developments in the last decade, especially the discovery

of graphene[1] and topological insulators[2–4], however, have

established the ubiquitousness of Dirac fermions in condensed

matter. The topologically protected surface states of topolog-

ical insulators are generally massless Dirac fermions, mean-

while, the bulk states of many topological insulators can be

described by massive Dirac equations. More recently, mass-

less Dirac[5–8] (and Weyl[9–26]) fermions have also been

discovered in bulk materials ( a recent experimentally discov-

ered material is the TaAs class[27–35] ).

The interactions among the nominal massless Dirac

fermions, if sufficiently strong, can dynamically generate

a Dirac mass and fundamentally change the properties of

fermions. This phenomenon was first studied in the context of

particle physics[36]. In this paper we investigate the physical

consequences of dynamical mass generation in several classes

of topological Dirac metals. We find that the dynamically

generated masses manifest themselves as helical spin orders.

These types of spin order have attracted considerable interests

in other materials and models[37–42]. As we shall show, their

emergence in topological Dirac semimetals is a quite robust

phenomenon, which is independent on material details. Phys-

ically, the helical spin orders result from the spin-orbit cou-

pling. Their descriptions as Dirac fermions permits a unified

treatment.

We present the results for three classes of materials. The

first example is the edge state of quantum spin Hall (QSH)

insulators[43–45]. Dynamically generated Dirac mass man-

ifests itself as helical order at the edge [see Fig.1]. Quan-

tum fluctuations, however, can destroy this order. Proximity

to other materials (e.g. proximity to certain superlattice struc-

tures) can stabilize the helical order. The second example is

the surface states of weak topological insulators, which are

closely related to the first example, while avoiding the strong

quantum fluctuations because of the higher dimensionality.

The third example is Weyl semimetal in magnetic field. Here

the helical order depends on the direction of magnetic field in

a specific manner, which provides a sharp experimental sig-

FIG. 1: Helical order at the edge of QSH.

nature for identification of Weyl semimetals[74]. The second

and the third examples will be our focuses.

Helical order at QSH edge. The edge of QSH accom-

modate two counterpropagating modes, whose spin is locked

with the propagating direction[46, 47]. The Hamiltonian reads

H(k) =
∑

k

vF(k − kF)c
†
↑kc↑k −

∑

k

vF(k + kF)c
†
↓kc↓k (1)

where the chemical potential has been absorbed into the def-

inition of kF . This form of H(k) is dictated by time reversal

symmetry. We can introduce cR/L by c↑(x) = eikF xcR(x) and

c↓(x) = e−ikF xcL(x), then the Hamiltonian becomes

H(p) = vF

∑

p

pc†pσzcp, (2)

where cp ≡ (cRp, cLp)T is the Fourier transformation of

cR/L(x), and σz is the spin operator. This Hamiltonian de-

scribes a one-dimensional massless Dirac metal (more pre-

cisely, Weyl metal), with σz playing the role of chirality.

In this paper we focus on the possibility of dynamical

fermion mass generation and symmetry breaking[48–50]. For

simplicity let us take the interaction to be short-ranged,

namely, HI = −g(c
†
L
cR)(c

†
R
cL) (with g > 0, which means re-

pulsive interaction among electrons with opposite chirality).

In the mean field theory, we define m = g〈c†
L
cR〉, and obtain

its mean field value as |m| = m0 ≡ vFΛ exp(− 2πvF

g
), where

Λ is a momentum cutoff. In this mean field calculation, only

|m| can be obtained, while the phase of m is arbitrary. It is

convenient to write m(x) = m0 exp(iθ(x)), neglecting the fluc-

tuation of |m|. The ground state without Goldstone modes is

θ(x) = θ0, where θ0 is an arbitrary real constant.

The expectation of the x-component of spin is given by

〈σx(x)〉 = e−iQx〈c†
L
(x)cR(x)〉 + eiQx〈c†

R
(x)cL(x)〉
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FIG. 2: (a) Weak TI as layered QSH. (b) Fermi surface nesting at the

surface (in the xz plane) of weak TI.

= 2
m0

g
cos(Qx − θ(x)) (3)

where Q ≡ 2kF . Similarly, we have

〈σy(x)〉 = −ie−iQx〈c†
L
(x)cR(x)〉 + ieiQx〈c†

R
(x)cL(x)〉

= −2
m0

g
sin(Qx − θ(x)) (4)

and 〈σz(x)〉 = 〈c†(x)σzc(x)〉 = 0. The helical order is illus-

trated in Fig.(1). Sofar a physically intuitive mean-field anal-

ysis is presented. A more rigorous approach is the bosoniza-

tion. The helical spin ordering is favored in the presence

of sufficiently strong interaction and certain perturbation en-

abling the umklapp processes (see “Supplemental Material”).

Helical order at the surface of weak TI. A natural recipe

to avoid strong quantum fluctuation in 1D is to couple many

one-dimensional (1D) systems together to form a 2D system.

This picture brings us to the study of this section.

Weak TIs are characterized by the so-called weak topolog-

ical indices[51, 52]. The simplest models of weak topologi-

cal insulators consist of layered QSH [see Fig.2]. Therefore,

the surface states can be obtained by coupling the QSH edge

states. Suppose that the surface of the weak TI coincides with

the xz-plane. To simplify the problem, we include hopping

terms among only adjacent layers. The low energy Hamilto-

nian for the surface reads

H(k) =
∑

k

vF(kx − kF )c
†
↑kc↑k −

∑

k

vF(kx + kF )c
†
↓kc↓k

−2t‖
∑

k

cos kz(c
†
↑kc↑k + c

†
↓kc↓k), (5)

where k ≡ (kx, kz), and t‖ is the inter-layer hopping.

A notable feature of this Hamiltonian is as follows. The

energy of electrons with spin up and spin down is E↑(k) =

vF(kx − kF) − 2t‖ cos kz and E↓(k) = −vF(kx + kF) − 2t‖ cos kz,

respectively, therefore, we have

E↑(k +Q) = vF (kx + kF) + 2t‖ cos kz = −E↓(k) (6)

FIG. 3: Helical order at the surface of weak TIs. This spin order is

helical in the x direction and staggered in the z direction.

where Q ≡ (2kF , π). Therefore, there is perfect Fermi sur-

face nesting at wavevector Q (This salient feature is absent

in the surface states of strong topological insulator[53]). An

infinitesimal interaction HI = −g(c
†
L
cR)(c

†
R
cL) can generate

a gap, analogous to the case of QSH edge. The order pa-

rameter of this symmetry breaking is m(x) = g〈c†
L
(x)cR(x)〉 ≡

m0 exp(iθ(x)). The spin densities are given by

〈σx(x)〉 = e−iQ·x〈c†
L
(x)cR(x)〉 + eiQ·x〈c†

R
(x)cL(x)〉

= 2
m0

g
cos(Q · x − θ(x)) (7)

where Q ≡ (2kF , π), and

〈σy(x)〉 = −ie−iQ·x〈c†
L
(x)cR(x)〉 + ieiQ·x〈c†

R
(x)cL(x)〉

= −2
m0

g
sin(Q · x − θ(x)) (8)

The spin texture at the weak TI surface is illustrated in Fig.3

(We have taken θ(x) to be a constant). The spin order is helical

in the x direction, while staggered in the z direction. Finally,

we remark that in real materials the perfect nesting is replaced

by approximate nesting. To be more conclusive, we have stud-

ied a realistic lattice model in the random phase approxima-

tion (RPA), and found that the approximate nesting favors he-

lical spin order even if the interaction is quite weak(see “Sup-

plemental Material”), therefore, we expect it to occur in real

materials of weak topological insulator.

Helical spin order in Weyl semimetals. The dynamical mass

generation induced by interaction and the resultant charge

density wave state has been studied before[49, 50, 54–57].

With an external magnetic field, the Fermi surface instabil-

ity becomes infinitesimal, i.e. an infinitesimal interaction can

open up a gap at the Fermi surface[18, 58]. Charge density

wave pattern is, however, too crude to identify the unique fea-

ture of Weyl semimetals, namely, the spin-momentum lock-

ing described by the Weyl equation. Here we show the exis-

tence of helical spin orders, which provides a finer signature

of Weyl-type spectrum.
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For simplicity let us consider a single pair of Weyl points

located at K1 and K2 respectively. We define the shorthand

notation Q = K1 − K2. The low-energy Weyl Hamiltonian

reads hs(p) = vF

∑

i, j=x,y,z pie
s
i j
σ j, in which s = 1, 2, pi ≡

ki − Ks,i, and es is a 3 × 3 matrix. For each i = x, y, z we

can define a vector es
i
= (es

ix
, es

iy
, es

iz
), thus hs becomes more

compact:

hs(p) = vF

∑

i=x,y,z

pi(e
s
i · σ), (9)

where pi is small compared to |Q|. Hereafter we shall focus

on the cases with es
i
· es

j
= δi j, for which compact analytical

treatment is possible.

Now we add a magnetic field B = Bẑ (We can always

rotate the coordinate system such that B points in the ẑ

direction)[75]. The energy eigenvalues for nonzero Landau

levels are

El(p) = ±vF

√

p2
z + 2eBl (l = 1, 2, 3, . . .) (10)

which are all gapped. To obtain the zeroth Landau level, first

we can solve the 2D problem in xy-plane by letting pz = 0. In

the Landau gauge the 2D Hamiltonian is

h2D(qx, qy) = vF [(px + eBy)es
x · σ + pyes

y · σ)]. (11)

We can find that the zeroth Landau level wavefunction

ψpx
(x, y) = 1√

2πeB
exp[− 1

2eB
(eBy + px)2] exp(ipxx)|es

x × es
y〉,

where we have introduced the notation |n〉 to denote the two-

component spinor satisfying 〈n|σi|n〉 = ni for an vector n.

Adding the pz term is now straightforward because |es
x × es

y〉 is

an eigenvector of pze
s
z · σ (This is the simplification of taking

es
i
· es

j
= δi j). The single-particle wavefunciton is

ψs
px ,pz

(x) =
1

√
2πeB

exp[− 1

2eB
(eBy + px)2]

× exp(ipxx + ipzz)|χse
s
z〉, (12)

in which we have introduced the chirality

χs = (es
x × es

y) · es
z = ±1, (13)

and the single-particle energy is

E s
px ,pz
= vF pze

s
z · σ|χse

s
z〉 = χsvF pz, (14)

According to the above wavefunction structure, the fermion

operators can be expanded as

c(x) =
∑

s

eiKs ·x|χse
s
z〉cs(x) + . . . , (15)

where “. . .” denotes high energy modes far away from the

Weyl points. Suppose that χ1 = −χ2 = 1, then the in-

dex identification 1(2) ↔ R(L) is valid, and the analysis of

dynamical symmetry breaking in the QSH section applies,

namely, a four-fermion interaction induces a chiral conden-

sation 〈c†
L
(x)cR(x)〉 = m(x)

g
≡ m0

g
exp(iθ(x)). The x-component

of spin density becomes

〈σx(x)〉 = 〈c†(x)σxc(x)〉

= e−iQ·x m(x)

g
〈χ2e2

z |σx|χ1e1
z 〉 + h.c. (16)

If we write |χ1e1
z 〉 = |e1

z 〉 = [cos(φ1/2), sin(φ1/2)eiϕ1]T

and |χ2e2
z 〉 = | − e2

z 〉 = [sin(φ2/2),− cos(φ2/2)eiϕ2]T ,

then we have 〈χ2e2
z |σx|χ1e1

z 〉 = sin(φ1/2) sin(φ2/2)eiϕ1 −
cos(φ1/2) cos(φ2/2)e−iϕ2 . Similarly, we have

〈σy(x)〉 = 〈c†(x)σyc(x)〉

= e−iQ·x m(x)

g
〈χ2e2

z |σy|χ1e1
z 〉 + h.c., (17)

with 〈χ2e2
z |σy|χ1e1

z 〉 = −i[cos(φ1/2) cos(φ2/2)e−iϕ2 +

sin(φ1/2) sin(φ2/2)eiϕ1], and

〈σz(x)〉 = 〈c†(x)σzc(x)〉

= e−iQ·x m(x)

g
〈χ2e2

z |σz|χ1e1
z 〉 + h.c., (18)

with 〈χ2e2
z |σz|χ1e1

z 〉 = cos(φ1/2) sin(φ2/2) +

sin(φ1/2) cos(φ2/2)ei(ϕ1−ϕ2). Finally, the charge density

is

〈σ0(x)〉 ≡ 〈c†(x)c(x)〉

= e−iQ·x m(x)

g
〈χ2e2

z |χ1e1
z 〉 + h.c., (19)

with 〈χ2e2
z |χ1e1

z 〉 = cos(φ1/2) sin(φ2/2) −
sin(φ1/2) cos(φ2/2)ei(ϕ1−ϕ2).

Studying some special cases help us to understand these

results. For instance, we consider

h1(p) = vF(pxσx − pyσz + pzσy),

h2(p) = vF(pxσx + pyσz + pzσy). (20)

It is readily seen that e1
z = e2

z = (0, 1, 0), and the previous

general results tell us that

〈σx(x)〉 = 2m0

g
sin(Q · x − θ(x)),

〈σy(x)〉 = 0,

〈σz(x)〉 = 2m0

g
cos(Q · x − θ(x)). (21)

This case is shown in Fig.(4a). If we take a different Weyl

Hamiltonian

h1(p) = vF(pxσx + pyσy + pzσz),

h2(p) = vF(pxσx − pyσy + pzσz), (22)

the a simple calculation yields

〈σx(x)〉 = −2m0

g
cos(Q · x − θ(x)),

〈σy(x)〉 = −2m0

g
sin(Q · x − θ(x)),

〈σz(x)〉 = 0. (23)
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FIG. 4: Helical spin orders in Weyl semimetals (with dynamical mass

generation) for (a) Hamiltonian in Eq.(20) and (b) Hamiltonian in

Eq.(22). Here Q is taken to be in the ẑ direction.

This case is shown in Fig.(4b). The charge density 〈σ0(x)〉 = 0

for these two cases. Eq.(20) and Eq.(22) qualitatively re-

sembles the Weyl semimetal materials and models. For in-

stance, the simple model[18] h(k) = 2tx sin kxσx+[2ty(cos ky−
cos k0) + m(2 − cos kx − cos kz)]σy + 2tz sin kzσz has a pair of

Weyl nodes at (0,±k0, 0), with hs=1,2 = vxσx px ± vyσy py +

vzσz pz as its low-energy approximation, which is the same as

Eq.(22) except for possible velocity anisotropy. More quanti-

tative study of these materials shall be presented elsewhere.

By changing the direction of magnetic field, |es
z〉 is changed

accordingly, and the helical spin texture changes in a pre-

scribed way. We also remark that if the Pauli matrices in

Eq.(9) are not associated with spin but some other degrees of

freedom, the helical order is a straightforward generalization

of the above results.

The spin helix predicted here can be observed by spin-

resolved scanning tunneling microscope (STM). It is unclear

whether the magnitude of electron-electron interaction (and

the sample quality) of the recently discovered Weyl semimet-

als favors generation of the spin helix, but we are probably

justified to be optimistic about its possible realization, consid-

ering the ongoing rapid progress in this field.

Electric manipulation of spin texture. So far we have

not investigated the effects of fluctuations of θ. Such

phase fluctuations are termed “axions”[59–61], and have also

been studied in the context of topological insulators and

superconductors[62–67]. In our present study the axion is

much more visible because of their simple geometrical mean-

ing: they are the phase angle of spin polarization (rotated from

Q · x).

Now we shall show that spin textures carry electric charge,

moreover, the charge density depends on the spin texture in a

precise manner. For concreteness, let us take the QSH edge as

an example. In the presence of θ(x, t), the spin polarization is

pointing to angle Q · x − θ(x, t). Let us consider the simplest

case, θ = θ0 − A cos(qx), where A << 1 is the amplitude of

spin modulation on the background of helical order. For such

slow modulation of the phase θ of Dirac mass, the Goldstone-

Wilczek formula[68] relates the gradient of θ to the charge

density:

ρ(x) =
1

2π
∂xθ =

A

2π
q sin(qx). (24)

On the other hand, if the charge density is given as ρ(x) =

ρ0 cos(qx), then we have

θ(x) =
2πρ0

q
sin(qx). (25)

Therefore, gating the system periodically, such that the charge

density modulates periodically, can control the spin modula-

tion in a predicable manner.

We can also consider gating the system to induce a con-

stant charge density ρ0(x) = C. According to the Goldstone-

Wilczek formula, we have θ(x) = 2πCx for this case. Now

the phase Qx − θ(x) = (Q − 2πC)x, namely, the wavevector of

helical spin order becomes Q − 2πC. This is consistent with

the relation Q = 2kF : a constant charge density amounts to

shifting kF in the underlying Fermi surface “before” dynami-

cal mass generation.

Finally, we remark that taking kF = 0 brings us back to the

result of Ref.[69], namely, a magnetic domain wall between

+x and −x magnetization generates fractional charge ±e/2.

For a general kF , 0, the ±x magnetization is replaced by

spin helix with wavevector Q = 2kF , i.e. both sides of the

domain wall are spin helixes, with a phase difference π.

Conclusions. A most prominent feature of topological

Dirac and Weyl semimetals is the spin-momentum locking,

which is a dramatic consequence of spin-orbit coupling. We

have shown that this spin-momentum locking can be “frozen”

as helical spin ordering in the presence of dynamical insta-

bility (“helical solids” from helical liquids). These real-space

(not the reciprocal-space) helical spin textures should be vis-

ible in spin-resolved STM. Apart from its intrinsic interest, it

has potential applications due to the electric tunability of he-

lical spin texture.
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