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We demonstrate rapid loading of a small array of optical tweezers with a single 87Rb atom per
site. We find that loading efficiencies of up to 90% per tweezer are achievable in less than 170 ms
for traps separated by more than 1.7µm. Interestingly, we find the load efficiency is affected by
nearby traps and present the efficiency as a function of the spacing between two optical tweezers.
This enhanced loading, combined with subsequent rearranging of filled sites, will enable the study
of quantum many-body systems via quantum gas assembly.

A frontier in atomic physics is the study of quantum
many-body physics on a microscopic scale. Recent ex-
periments have shown the power of microscopy of de-
generate quantum gases in optical lattices [1, 2]. An
exciting prospect is not only imaging quantum gases,
but assembling them into a well-known initial config-
uration from single-atom building blocks and then ob-
serving the resulting dynamics with single-atom resolu-
tion. Wavelength-scale optical dipole traps, or optical
tweezers, are an attractive platform for control of neu-
tral atoms because they allow repositioning of the atoms
after state preparation and site-resolved imaging. Using
optical tweezers, long-range interactions between neutral
atoms have been harnessed via Rydberg blockade [3–5],
and it is now possible to observe controlled interactions
and interference between bosonic and fermionic atoms
placed individually in their motional ground state [6–8].
While optical tweezer traps can be scaled to arrays [9–
12], realizing an ordered array with a single atom per
trap is difficult and is a problem of long-standing inter-
est [13–16].

Early experiments with optical tweezers demon-
strated sub-Poissonian atom-number statistics using
light-assisted collisions that rapidly expel pairs of atoms,
a process known as collisional blockade [17–20]. This has
become a reliable method to isolate single atoms, as well
as the basis for parity imaging in quantum-gas micro-
scopes [1, 2, 17]. However, the collisional blockade also
limits loading efficiencies to approximately 50%, making
the probability to uniformly-fill large arrays prohibitively
small [18–20].

Careful studies of light-assisted collisions in optical
dipole traps hold promise for realizing deterministic load-
ing of arrays of atoms [16, 21]. Light-assisted collisions
are successfully described by transitions between molec-
ular potentials that become resonant with the light at
specific interatomic separations, RC [Fig. 1(a)] [22]. In
the case of light that is red-detuned from the bare atomic
transition, the atoms associate to an attractive potential
and can gain a large kinetic energy, leading to loss of
both atoms from the trap. Conversely, when the light is
blue-detuned, the atoms associate to a repulsive poten-

tial where the maximum kinetic energy gained is set by
the detuning [23]. This control has been used to preferen-
tially expel single 85Rb atoms from a trap, enabling the
isolation of single atoms with high probability [16, 21].
However, open questions have been whether this tech-
nique can be extended to efficiently load arrays of traps
or be adapted to atomic species with a different hyperfine
structure.

Here, we report near-deterministic loading of single
87Rb atoms that is more rapid than previous realiza-
tions and show that this loading can be used to prepare a
uniformly-filled array of traps. This technique realizes a
2×2 array of atoms in optical tweezers in more than 60%
of experimental runs [Fig. 1(d)]. Further, we study how
close two optical tweezers can be loaded without deleteri-
ous effects. To enable the creation of closely-spaced atom
arrays, we use tight optical tweezers that have a volume
more than an order of magnitude smaller than was used
in previous work. This causes the collisional dynamics
to occur on a much faster time scale [18], which pre-
vents initially trapping many atoms in a single tweezer.
Hence, in our method a set of collisional beams are ap-
plied in conjunction with loading from a magneto-optical
trap (MOT). Despite this difference, we find the optical
detunings and powers required are similar to previous
work with 85Rb [16, 21].

The experimental apparatus generates optical tweez-
ers by focusing λ = 852 nm light to a 1/e2 radius of
w0 = 0.71µm [7, 24, 25]. Arrays of optical tweezers are
created by generating multiple first-order deflections in
each of two acousto-optic modulators (AOMs), which are
oriented to produce deflections along two orthogonal di-
rections (e.g., vertical and horizontal) transverse to the
beam propagation axis. In our MOT, we combine a mag-
netic field gradient with three beams that are each retro-
reflected in the σ+ − σ− polarization configuration and
contain “cycling” light, which is 25 MHz red-detuned of
the free-space D2 F = 2→ F ′ = 3 transition [Fig. 1(b)];
two of the beams also contain “repump” light, which is
resonant with the free-space D2 F = 1→ F ′ = 2 transi-
tion.

In our enhanced loading procedure, our optical tweez-
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FIG. 1. (color online). Enhanced loading and beam schematic.
(a) Light-assisted collisions for blue-detuned light (top) and
red-detuned light (bottom). As the atoms approach RC in the
ground-state |S1/2 + S1/2〉 potential, the light becomes reso-
nant with excitation to the repulsive (attractive) |S1/2+P1/2〉
molecular potential. (b) Level diagram showing the relevant
levels of 87Rb and the free-space (left) or trap-shifted (right)
frequencies required for enhanced loading (level spacings not
to scale). (c) An average of many images of a single tweezer
at full resolution. Histogram showing the number of photons
detected on the highlighted binned-pixel after the 155 ms en-
hanced loading procedure. (d) A single image of four atoms in
an array of four optical tweezers separated by 4.18µm along
each dimension. Comparison of loading probability in an ar-
ray of four tweezers for loading using PGC (red bars) and the
enhanced loading procedure (blue bars).

ers are overlapped with the MOT along with two “col-
lisional beams” [Fig. 1(b)]: The “795 beam” is blue-
detuned from the trap-shifted D1 F = 1 → F ′ = 2
transition and drives the blue-detuned light-assisted col-
lisions. The “2 − 2′” beam is near resonant with the
trap-shifted D2 F = 2 → F ′ = 2 transition and quickly
pumps trapped atoms to the F = 1 manifold. After load-
ing the MOT for 110-135 ms with the collisional beams
on, we turn off the magnetic-field gradient and zero the
magnetic field, while keeping only the collisional beams
on for an additional 35 ms, which ensures there are never

Parameter 795 Beam 2-2′ Beam

Detuning δ = +50.2 MHz +8.6 MHz

Intensity 40 mW
cm2 14 mW

cm2

Polarization linear (π) lin⊥lin (unpolarized)

TABLE I. Collisional beam parameters used for loading the
2× 2 array of optical tweezers shown in Fig. 1(d). Represen-
tative saturation intensities for these transitions are between
3 and 5 mW

cm2 [27].

two atoms in the trap after the loading procedure. To
give the colliding atoms just enough kinetic energy for
one atom to escape from the trap, the 795 beam should
be detuned by approximately the trap depth (in units of
h). We find it is important to have a large trap depth
(h × 73 MHz for these data) to overcome single-particle
loss due to higher scattering rates at smaller 795 beam
detunings.

Atoms are detected via the fluorescence collected dur-
ing 25 ms of polarization-gradient cooling (PGC) in the
trap [26]. The histogram in Fig. 1(c) depicts the number
of photons detected on the highlighted pixel in Fig. 1(d)
over 2000 runs of the experiment. The two peaks in the
histogram correspond to runs with zero (100 photons)
and one (430 photons) atom in the trap, indicating one
atom in (88.7±0.4)% of runs. There are never two atoms
present in the trap, as indicated by the lack of images
with more than 550 photons detected. The collisional
beam parameters used to achieve this result are given in
Table I. For comparison, single atoms can be loaded into
our h×23 MHz depth trap via PGC in 63% of attempts,
resulting in the loading distribution shown by the red
bars in Fig. 1(d) for a 2x2 array of traps [6, 20, 26].

The dependence on the 795 beam detuning is shown
in Fig. 2(a). The detuning is calibrated relative to the
trap-shifted transition, which is approximately 115 MHz
blue of the free-space resonance. Near-resonance, the
large scattering rate causes rapid single-atom loss and
the load probability drops. The light-blue band depicts
the range of detunings used for enhanced loading, while
the green dashed line represents the trap depth (in units
of h). The use of detunings smaller than the trap depth
is expected. It is unlikely for both atoms to be at the
bottom of the trap prior to colliding and thus less energy
is required to remove one atom. The loading efficiency
decreases at larger detunings because the energy gained
becomes large enough for both atoms to be kicked out
in a single collision. The 2 − 2′ beam should be res-
onant with the trap-shifted transition, but the loading
efficiency is not particularly sensitive to the exact de-
tuning except for a rapid drop-off (due to single-particle
heating) as the beam is tuned red of the transition. The
+8.6 MHz detuning (Table I) serves as a buffer against
slow drifts in the light-shifted resonance without degra-
dation in the peak loading efficiency. However, we find
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FIG. 2. (color online). Loading an array of optical tweez-
ers. (a) Loading probability as a function of the 795 beam
detuning for each of the four wells in the 2×2 array shown
in Fig. 1(d); each shape corresponds to data from one of the
four wells, shown individually to demonstrate the consistency.
The green dashed line is the trap depth (in units of h). The
light-blue band represents the range of detunings used for en-
hanced loading. (b) Loading probability as a function of the
total length of the enhanced loading procedure. Notice the
rapid increase in the load probability as the MOT density in-
creases, saturating around 90% in under 170 ms. All of the
data points correspond to the loading probability from 200
repetitions of the loading procedure; we show a single rep-
resentative error bar (standard error in the measurement),
which is indicated in black, on the fifth data point in each
plot.

that the beam intensities required for both of the col-
lisional beams are significantly higher than one might
expect, i.e., well above the saturation intensity for 87Rb.
For example, we observe that reducing the intensity of
either beam by a factor of 4 reduces the load probability
to 70% or less.

We found that the polarization of the collisional beams
did not have a significant effect on the loading efficiency,
but we indicate those used for our data in Table I [21].
Because there is no quantization axis during the load-
ing, the polarization is not well-defined with respect to
the atoms. Hence, we define π-polarization to be linearly
polarized along the optical tweezer axis (the axis of prop-
agation of the trapping light), and this is the polarization
used for the 795 beam. The 2−2′ beam is retro-reflected
in a lin⊥lin configuration, with the beams crossing the

traps at roughly 45◦ to the tweezer axis, giving projec-
tions onto all polarizations. We observe that the loading
efficiency is independent of whether the 2 − 2′ light is
retro-reflected or in a single-pass configuration. This in-
dicates that the 2− 2′ light is not cooling the atoms via
the lin⊥lin polarization configuration.

Finally, we show the loading efficiency as a function
of the total length of the loading procedure, which starts
when the light is first turned on and ends before imaging,
in Fig. 2(b). The load time here is likely mainly limited
by the time required for the MOT to achieve a sufficient
density, as evidenced by our observation of similar re-
quired time scales for typical loading [6]. And hence, it
is likely that improving the MOT loading rate (e.g., by
using a different beam geometry) would shorten the total
loading time.

When applying the enhanced loading protocol to a
tweezer array, we can observe a reduction in the load
efficiency of each tweezer. To study this effect, we mea-
sure the loading efficiency as a function of the spacing
between two optical tweezers a [Fig. 3(a)]. The points
connected by the solid light-blue line depict the mea-
sured load efficiency using collisional beam parameters
optimized for tweezers at a separation of a = 4.18µm;
these isolated-tweezer beam parameters are the same as
those given in Table I, except with a larger 795 beam
detuning of δ = +69.4 MHz. The points connected by
the dashed dark-blue line indicate the highest loading
efficiencies achieved by optimizing the collisional beam
parameters at each tweezer separation. As a guide to the
eye, the dashed black line indicates a loading probability
of 90%. The insets depict the total potential of two gaus-
sian tweezers with w0 = 0.71µm and a = 1.46µm and
4.18µm. Notice that the reduced load efficiency occurs
for values of a where the barrier between the two wells is
lowered.

To gain further insight into the reduced loading prob-
ability, we perform a separate experiment where we ini-
tialize two atoms in the right tweezer (by combining two
traps with a single atom each, as determined by post se-
lection). We apply the collisional beams to the pair of
atoms for 35 ms, which should be sufficient time to en-
sure that the atoms do not remain in the same trap, but
also means that multiple light-assisted collisions could
occur. This experiment allows us to observe the result-
ing trap occupancies after collisions between two atoms
in the presence of a nearby tweezer. The cartoons above
the plot in Fig. 3(b) depict measured outcomes: A single
atom remaining in the right well, one atom in each well,
and a single atom remaining in the left well. In addition,
two-atom loss can occur. The solid purple line is the sum
of the first two, which both result in a single atom in the
right well; this is the closest analog to load efficiency.

Using the outcome probabilities from Fig. 3(b), and
assuming the effects of collisions that do not remove an
atom are negligible, we perform a simple Monte-Carlo
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FIG. 3. (color online). Effect of tweezer spacing on loading.
(a) Maximum loading probability achieved (per tweezer) after
optimizing the loading parameters at each well spacing (dark-
blue dashed line) and the loading probability when using the
isolated-tweezer beam parameters at each spacing (light-blue
solid line) versus the spacing between the center of two tweez-
ers a. The loading probability calculated from a Monte-Carlo
simulation of the loading process (gray band) using the mea-
sured probabilities of the four possible outcomes (three of
which are shown in part b) during each collision event and
neglecting any single-particle effects. (b) Controlled experi-
ment studying the effect of collisional light on two trapped
atoms in proximity to a second trap. Measured probabilities
of a single atom remaining in the right well (dash-dotted green
line), one atom remaining in each well (dashed orange line),
a single atom remaining in the left well (dotted red line), and
the total probability for an atom to remain in the right well
(solid purple line) as a function of the spacing between the
optical tweezers.

simulation to estimate the expected loading efficiency.
The results of this simulation [gray band in Fig. 3(a)],
exhibit the same character as the measured loading data.
The importance of this simulation is that it demonstrates
that atoms moving between the wells can affect the fi-
nal loading probabilities. We also see that the numbers
it gives are reasonable: The simulated load efficiency is
between the loading measured with the same collisional
beam parameters (solid light-blue line) and the high-
est achievable loading rate (dashed dark-blue line) and

the addition of the magnetic field gradient and MOT
light during load could alter the outcome probabilities.
While we can not exclude the possibility that the reduced
loading efficiency is due to proximity between the atoms
themselves (e.g., due to expelled atoms colliding with
atoms in nearby traps), our data are consistent with this
reduction being solely due to the deformation of the com-
bined potential leading to a higher probability of atoms
moving between wells. Thus, it is possible that atoms
could be efficiently loaded into potentials separated by
less than 1.7µm, provided the potential barrier between
neighboring traps is large enough that they are effectively
independent traps.

The loading procedure presented already makes larger-
scale experiments in optical tweezers feasible, especially
when combined with trap rearrangement based on occu-
pancy [13, 14]. But it is still relevant to ask what would
improve this loading efficiency. Using a larger trap depth
will help mitigate two important sources of loss: Single-
atom heating from scattering of the 795 beam and pair
loss due to red-detuned collisions from the MOT light.
However even with larger trap depths, more consistent
initial conditions are necessary to achieve the highest
possible load efficiencies [21]. It may be possible to use
a form of blue-detuned Sisyphus cooling as a mechanism
to cool single trapped atoms that does not interfere with
the primary light-assisted collisions in the presence of a
second atom [28].

In conclusion, we have demonstrated a loading
procedure that allows for the rapid preparation of
uniformly-filled arrays of single neutral atoms and
only requires the addition of two collisional beams.
We observed a reduction in the loading efficiency for
optical tweezers in close-proximity, but found that, for
isolated potential wells, we achieve up to 90% loading
efficiency per well. This procedure will not only enable
the creation of uniform atom arrays via optical tweezers,
but could also be applicable to the loading of optical
lattices or even nanophotonic structures [29, 30].
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