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We derive a new class of one-loop non-renormalization theorems that strongly constrain the
running of higher dimension operators in a general four-dimensional quantum field theory. Our
logic follows from unitarity: cuts of one-loop amplitudes are products of tree amplitudes, so if
the latter vanish then so too will the associated divergences. Finiteness is then ensured by simple
selection rules that zero out tree amplitudes for certain helicity configurations. For each operator
we define holomorphic and anti-holomorphic weights, (w,w) = (n−h, n+h), where n and h are the
number and sum over helicities of the particles created by that operator. We argue that an operator
Oi can only be renormalized by an operator Oj if wi ≥ wj and wi ≥ wj , absent non-holomorphic
Yukawa couplings. These results explain and generalize the surprising cancellations discovered in
the renormalization of dimension six operators in the standard model. Since our claims rely on
unitarity and helicity rather than an explicit symmetry, they apply quite generally.

INTRODUCTION

Technical naturalness dictates that all operators not
forbidden by symmetry are compulsory—and thus gen-
erated by renormalization. Softened ultraviolet diver-
gences are in turn a telltale sign of underlying symmetry.
This is famously true in supersymmetry, where holomor-
phy enforces powerful non-renormalization theorems.

In this letter we derive a new class of non-
renormalization theorems for non-supersymmetric the-
ories. Our results apply to the one-loop running of
the leading irrelevant deformations of a four-dimensional
quantum field theory of marginal interactions,

∆L =
∑
i

ciOi, (1)

where Oi are higher dimension operators. At leading
order in ci, renormalization induces operator mixing via

(4π)2 dci
d logµ =

∑
j

γijcj , (2)

where by dimensional analysis the anomalous dimension
matrix γij is a function of marginal couplings alone.
The logic of our approach is simple, making no ref-

erence to symmetry. Renormalization is induced by log
divergent amplitudes, which by unitarity have kinematic
cuts equal to products of on-shell tree amplitudes [1]. If
any of these tree amplitudes vanish, then so too will the
divergence. Crucially, many tree amplitudes are zero due
to helicity selection rules, which e.g. forbid the all minus
helicity gluon amplitude in Yang-Mills theory.

For our analysis, we define the holomorphic and anti-
holomorphic weight of an on-shell amplitude A by1

w(A) = n(A)− h(A), w(A) = n(A) + h(A), (3)

1 Holomorphic weight is a generalization of k-charge in super
Yang-Mills theory, where the NkMHV amplitude has w = k + 4.

where n(A) and h(A) are the number and sum over helic-
ities of the external states. Since A is physical, its weight
is field reparameterization and gauge independent. The
weights of an operator O are then invariantly defined by
minimizing over all amplitudes involving that operator:
w(O) = min{w(A)} and w(O) = min{w(A)}. In prac-
tice, operator weights are fixed by the leading non-zero
contact amplitude2 built from an insertion of O,

w(O) = n(O)− h(O), w(O) = n(O) + h(O), (4)
where n(O) is the number of particles created by O and
h(O) is their total helicity. For field operators we find:

O Fαβ ψα φ ψ̄α̇ F̄α̇β̇
h +1 +1/2 0 −1/2 −1

(w,w) (0, 2) (1/2, 3/2) (1, 1) (3/2, 1/2) (2, 0)

where all Lorentz covariance is expressed in terms of
four-dimensional spinor indices, so e.g. the gauge field
strength is Fαα̇ββ̇ = Fαβ ε̄α̇β̇ + F̄α̇β̇εαβ . The weights of
all dimension five and six operators are shown in Fig. 1.

As we will prove, an operator Oi can only be renormal-
ized by an operator Oj at one-loop if the corresponding
weights (wi, wi) and (wj , wj) satisfy the inequalities

wi ≥ wj and wi ≥ wj , (5)
and all Yukawa couplings are of a “holomorphic” form
consistent with a superpotential. This implies a new
class of non-renormalization theorems,

γij = 0 if wi < wj or wi < wj , (6)
which impose mostly zero entries in the matrix of anoma-
lous dimensions. The resulting non-renormalization the-
orems for all dimension five and six operators are shown
in Tab. I and Tab. II.

2 By definition, all covariant derivatives D are treated as partial
derivatives ∂ when computing the leading contact amplitude.
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Figure 1. Weight lattice for dimension five and six operators,
suppressing flavor and Lorentz structures, e.g. on which fields
derivatives act. Our non-renormalization theorems permit
mixing of operators into operators of equal or greater weight.
Pictorially, this forbids transitions down or to the left.

Because our analysis hinges on unitarity and helic-
ity rather than off-shell symmetry principles, the result-
ing non-renormalization theorems are general. More-
over, they explain the ubiquitous and surprising cancel-
lations [2] in the one-loop renormalization of dimension
six operators in the standard model [3–6]. Absent an
explanation from power counting or spurions, the au-
thors of [2] conjectured a hidden “holomorphy” enforc-
ing non-renormalization among holomorphic and anti-
holomorphic operators. We show here that this classifi-
cation simply corresponds to w < 4 and w < 4, so these
cancellations follow immediately from Eq. (6), as shown
in Tab. II .

WEIGHING TREE AMPLITUDES

To begin, we compute the holomorphic and anti-
holomorphic weights (wn, wn) of a general n-point on-
shell tree amplitude in a renormalizable theory of mass-
less particles. We start at lower-point and apply induc-
tion to extend to higher-point.

The three-point amplitude is

A(1h12h23h3) = g

{
〈12〉r3〈23〉r1〈31〉r2 ,

∑
i hi ≤ 0

[12]r3 [23]r1 [31]r2 ,
∑
i hi ≥ 0 (7)

where g is the coupling and each case corresponds to
MHV and MHV kinematics, |1] ∝ |2] ∝ |3] and |1〉 ∝
|2〉 ∝ |3〉. Lorentz invariance fixes the exponents to be
ri = −ri = 2hi −

∑
j hj and

∑
i ri =

∑
i ri = 1 − [g]

by dimensional analysis [7]. According to Eq. (7), the
corresponding weights are

(w3, w3) =
{

(4− [g], 2 + [g]),
∑
i hi ≤ 0

(2 + [g], 4− [g]),
∑
i hi ≥ 0 (8)

In a renormalizable theory, [g] = 0 or 1, so we obtain

w3, w3 ≥ 2, (9)

for the three-point amplitude.
The majority of four-point tree amplitudes satisfy

w4, w4 ≥ 4 because w4 < 4 and w4 < 4 require a non-
zero total helicity which is typically forbidden by helicity
selection rules. To see why, we enumerate all possible
candidate amplitudes with w4 < 4. Analogous argu-
ments will apply for w4 < 4.
Most four-point tree amplitudes with w4 = 1 or 3

vanish since they have no Feynman diagrams, so

0 = A(F+F+F±φ) = A(F+F+ψ±ψ±)
= A(F+F−ψ+ψ+) = A(F+ψ+ψ−φ)
= A(ψ+ψ+ψ+ψ−).

Furthermore, most amplitudes with w4 = 0 or 2 vanish
due to helicity selection rules, so

0 = A(F+F+F+F±) = A(F+F+ψ+ψ−)
= A(F+F+φ φ) = A(F+ψ+ψ+φ).

While Feynman diagrams exist, they vanish on-shell for
the chosen helicities. This leaves a handful of candidate
non-zero amplitudes,

0 6= A(ψ+ψ+ψ+ψ+), A(F+φ φ φ), A(ψ+ψ+φ φ),

with w4 = 2, 3, 3, respectively. These “exceptional am-
plitudes” are the only four-point tree amplitudes with
w4 < 4 that do not vanish identically.
The exceptional amplitudes all require internal or

external scalars, so they are absent in theories with
only gauge bosons and fermions, e.g. QCD. The sec-
ond and third amplitudes involve super-renormalizable
cubic scalar interactions, which we do not consider here.
The first amplitude arises from Yukawa couplings of non-
holomorphic form: that is, φψ2 together with φ̄ψ2, which
in a supersymmetric theory would violate holomorphy of
the superpotential. In the standard model, Higgs dou-
blet exchange generates an exceptional amplitude pro-
portional to the product up-type and down-type Yukawa
couplings. This diagram will be important later when we
consider the standard model. In summary,

w4, w4 ≥ 4, (10)

for the four-point amplitude, modulo exceptional ampli-
tudes.

Finally, consider a general higher-point tree ampli-
tude, Ai, which on a factorization channel equals a prod-
uct of amplitudes, Aj and Ak,

fact[Ai] = i

`2

∑
h

Aj(`h)Ak(−`−h), (11)
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Figure 2. Diagrams of tree factorization and one-loop unitar-
ity, with the weight selection rules from Eqs. (12) and (18).

depicted in Fig. 2. If the total numbers and helicities of
Ai, Aj , and Ak, are (ni, hi), (nj , hj), and (nk, hk), then
ni = nj+nk−2 and hi = hj+hk, since either side of the
factorization channel carries equal and opposite helicity.
Thus, the corresponding weights, (wi, wi), (wj , wj), and
(wk, wk), satisfy the following tree selection rule,

tree rule: wi = wj + wk − 2
wi = wj + wk − 2 (12)

We have already shown that w3, w3 ≥ 2 and w4, w4 ≥ 4
modulo the exceptional diagrams. Since all five-point
amplitudes factorize into three and four-point ampli-
tudes, Eq. (12) implies that w5, w5 ≥ 4. Induction to
higher-point then yields the main result of this section,

wn, wn ≥
{

2, n = 3
4, n > 3 (13)

which, modulo exceptional amplitudes, is a lower bound
on the weights of n-point tree amplitudes in a theory of
massless particles with marginal interactions. Note that
even when exceptional amplitudes exist, wn, wn ≥ 2.
An important consequence of Eq. (12) is that attach-

ing renormalizable interactions to an arbitrary ampli-
tude Aj—perhaps involving irrelevant interactions—can
only produce an amplitude Ai of greater or equal weight.
To see why, note that Ai factorizes into Aj and an am-
plitude Ak composed of only renormalizable interactions,
where wk, wk ≥ 2 by Eq. (13). Eq. (12) then implies that
wi ≥ wj and wi ≥ wj , so the minimum weight ampli-
tude involving a higher dimension operator is the contact
amplitude built from a single insertion of that operator.

WEIGHING ONE-LOOP AMPLITUDES

The weights of one-loop amplitudes are obtained from
generalized unitarity and the tree-level results of the
previous section. The leading order renormalization of
higher dimension operators is encoded in the anomalous
dimension matrix γij describing how Oi is radiatively

generated by Oj and loops of marginal interactions. In
practice, γij is extracted from the one-loop amplitude
Aloop
i built around an insertion of Oj with the same ex-

ternal states as the tree amplitude Ai built around an
insertion of Oi. Any divergence in Aloop

i must then be
absorbed by the counterterm Ai, which implies non-zero
γij . By dimensional analysis, a necessary condition for
renormalization is that Oi and Oj have equal mass di-
mension, but as we will see, this is not a sufficient con-
dition because of our non-renormalization theorems.

The Passarino-Veltman (PV) reduction [8] of the one-
loop amplitude Aloop

i is

Aloop
i =

∑
box

d4I4 +
∑

triangle
d3I3 +

∑
bubble

d2I2 + rational,

which sums over topologies of scalar box, triangle, and
bubble integrals, I4, I3, and I2. Tadpole integrals van-
ish for massless particles. The integral coefficients d4,
d3, and d2 are rational functions of external kinematic
data. Ultraviolet log divergences arise from the scalar
bubble integrals in the PV reduction, where in dimen-
sional regularization, I2 → 1/(4π)2ε. Separating ultra-
violet divergent and finite terms, we find

Aloop
i = 1

(4π)2ε

∑
bubble

d2 + finite, (14)

which implies a counterterm tree amplitude,

Ai = − 1
(4π)2ε

∑
bubble

d2, (15)

so Aloop
i +Ai is finite.

Generalized unitarity [1] fixes integral coefficients by
relating kinematic singularities of the one-loop ampli-
tude to products of tree amplitudes. The two-particle
cut in a particular channel is

cut[Aloop
i ] =

∑
h1,h2

Aj(`h1
1 , `h2

2 )Ak(−`−h1
1 ,−`−h2

2 ), (16)

where `1, `2 and h1, h2 are the momenta and helicities of
the cut lines and Aj and Ak are on-shell tree amplitudes
corresponding to the cut channel, as depicted in Fig. 2.

Applying this cut to the PV reduction, we find

cut[Aloop
i ] = d2 + terms depending on `1, `2, (17)

where the `1, `2 dependent terms correspond to two-
particle cuts of triangle and box integrals. Famously,
the divergence of the one-loop amplitude is related to the
two-particle cut [9–11]. However, a kinematic singularity
is present only if Aj and Ak are four-point amplitudes
or higher, corresponding to “massive” bubble integrals.
When Aj or Ak are three-point amplitudes, the associ-
ated “massless” bubble integrals are scaleless and vanish
in dimensional regularization. We ignore these subtle
contributions for now but revisit them later.



4

F 2φ Fψ2 ψ2φ2 F̄ ψ̄2 F̄ 2φ ψ̄2φ2 φ5

(w, w̄) (1, 5) (1, 5) (3, 5) (5, 1) (5, 1) (5, 3) (5, 5)
F 2φ (1, 5)
Fψ2 (1, 5)
ψ2φ2 (3, 5)
F̄ 2φ (5, 1)
F̄ ψ̄2 (5, 1)
ψ̄2φ2 (5, 3)
φ5 (5, 5)

Table I. Anomalous dimension matrix for dimension five op-
erators in a general quantum field theory. The shaded entries
vanish by our non-renormalization theorems.

Eqs. (15), (16), and (17) imply that the total numbers
and helicities (ni, hi), (nj , hj), (nk, hk) of Ai, Aj and Ak
satisfy ni = nj + nk − 4 and hi = hj + hk, and thus the
one-loop selection rule,

one-loop rule: wi = wj + wk − 4
wi = wj + wk − 4 (18)

where (wi, wi), (wj , wj), and (wk, wk) are the corre-
sponding amplitude weights. For each γij we identify
Ai and Aj with tree amplitudes built around insertions
of Oi and Oj , and Ak with a tree amplitude of the
renormalizable theory. As noted earlier, the amplitudes
on both sides of the cut must be four-point or higher
for a non-trivial unitarity cut, so Eq. (13) implies that
wk, wk ≥ 4, absent exceptional amplitudes. Eq. (18)
then implies that wi ≥ wj and wi ≥ wj , which is the non-
renormalization theorem of Eq. (5). If exceptional ampli-
tudes with wk, wk = 2 are present from non-holomorphic
Yukawas, then Eq. (5) is violated by exactly two units.

Fig. 1 shows the weight lattice for all dimension five
and six operators in a general quantum field theory. We
employ the operator basis of [12], so redundant opera-
tors, e.g. those involving 2φ, are eliminated by equa-
tions of motion. Our non-renormalization theorems im-
ply that operators can only renormalize operators of
equal or greater weight, which in Fig. 1 forbids tran-
sitions that move down or to the left. The form of the
anomalous dimension matrix for all dimension five and
six operators is shown in Tab. I and Tab. II.

INFRARED DIVERGENCES

We now return to the issue of massless bubble inte-
grals. While these contributions formally vanish in di-
mensional regularization, this is potentially misleading
because ultraviolet and infrared divergences enter with
opposite sign 1/ε poles. Thus, an ultraviolet divergence
may be present if there is an equal and opposite virtual
infrared divergence [9–11]. Crucially, the Kinoshita-Lee-
Nauenberg theorem [14] maintains that all virtual in-
frared divergences are canceled by an inclusive final state

sum incorporating tree-level real emission of an unre-
solved soft or collinear particle. Inverting the logic, if
real emission is infrared finite, then there can be no vir-
tual infrared divergence and thus no ultraviolet diver-
gence. As we will see, this is true of the massless bubble
contributions which were discarded but could a priori
violate Eq. (5).

To diagnose potential infrared divergences in Aloop
i ,

we analyze the associated amplitude for real emission,
Areal
i′ . In the infrared regime, the singular part of this

amplitude factorizes: Areal
i′ → AiSi→i′ +AjSj→i′ , where

Ai and Aj are tree amplitudes built around insertions
of Oi and Oj , and Si→i′ and Sj→i′ are soft-collinear
functions describing the emission of an unresolved par-
ticle. The soft-collinear functions from marginal inter-
actions diverge as 1/ω and 1/

√
1− cos θ in the soft and

collinear limits, respectively, where ω and θ are the en-
ergy and splitting angle characterizing the emitted par-
ticle. By dimensional analysis, irrelevant interactions
have additional powers of soft or collinear momentum
rendering them infrared finite—a fact we have verified
explicitly for all dimension five and six operators. Since
the phase-space measure is

´
dω ω

´
d cos θ, infrared di-

vergences require that Si→i′ and Sj→i′ both arise from
soft and/or collinear marginal interactions.

For soft emission, the hard process is unchanged [15].
Since AiSi→i′ and AjSj→i′ contribute to the same pro-
cess, Ai and Aj must have the same external states and
thus equal weight, wi = wj . While massless bubbles do
contribute infrared and ultraviolet divergences not previ-
ously accounted for, this is perfectly consistent with the
non-renormalization theorem in Eq. (5), which allows for
operator mixing when wi = wj . Violation of Eq. (5) in-
stead requires from infrared divergences when wi < wj .
However, the corresponding soft emission would induce
a hard particle helicity flip and thus be subleading in the
soft limit and finite upon

´
dω integration.

Similarly, collinear emission is divergent for wi = wj
but finite for wi < wj . Since AiSi→i′ and AjSj→i′

have the same external states and weight, restricting to
wi < wj means that w(Si→i′) > w(Sj→i′). Eq. (8) then
implies that Si→i′ and Sj→i′ are collinear splitting func-
tions generated by on-shell MHV and MHV amplitudes.
As a result, the interference term S∗j→i′Si→i′ carries net
little group weight with respect to the mother particle
initiating the collinear emission. Rotations of angle φ
around the mother particle axis act as a little group
transformation on S∗j→i′Si→i′ , yielding a net phase e2iφ

in the differential cross-section. Integrating over this an-
gle yields

´ 2π
0 dφ e2iφ = 0, so the collinear singularity

vanishes upon phase-space integration.
In summary, since real emission is infrared finite for

wi < wj , there are no corresponding ultraviolet diver-
gences from massless bubbles. The non-renormalization
theorems in Eq. (5) apply despite infrared subtleties.
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F 3 F 2φ2 Fψ2φ ψ4 ψ2φ3 F̄ 3 F̄ 2φ2 F̄ ψ̄2φ ψ̄4 ψ̄2φ3 ψ̄2ψ2 ψ̄ψφ2D φ4D2 φ6

(w, w̄) (0, 6) (2, 6) (2, 6) (2, 6) (4, 6) (6, 0) (6, 2) (6, 2) (6, 2) (6, 4) (4, 4) (4, 4) (4, 4) (6, 6)
F 3 (0, 6) × × × × × × × × × ×

F 2φ2 (2, 6) × × × × × ×

Fψ2φ (2, 6) × × ×

ψ4 (2, 6) × × × × × × × × y2 × ×

ψ2φ3 (4, 6) ×∗ y2 ×

F̄ 3 (6, 0) × × × × × × × × × ×

F̄ 2φ2 (6, 2) × × × × × ×

F̄ ψ̄2φ (6, 2) × × ×

ψ̄4 (6, 2) × × × × × × × × ȳ2 × ×

ψ̄2φ3 (6, 4) ȳ2 ×∗ ×

ψ̄2ψ2 (4, 4) × ȳ2 × × y2 × × ×

ψ̄ψφ2D (4, 4) ×

φ4D2 (4, 4) × × × ×

φ6 (6, 6) ×∗ × × ×∗ × × ×

Table II. Anomalous dimension matrix for dimension six operators in a general quantum field theory. The shaded entries
vanish by our non-renormalization theorems, in full agreement with [2]. Here y2 and ȳ2 label entries that are non-zero due
to non-holomorphic Yukawa couplings, × labels entries that vanish because there are no diagrams [13], and ×∗ labels entries
that vanish by a combination of counterterm analysis and our non-renormalization theorems.

APPLICATION TO THE STANDARD MODEL

Our results apply to the standard model and its exten-
sion to higher dimension operators [2–6]. A tour de force
calculation of the full one-loop anomalous dimension ma-
trix of dimension six operators [4] unearthed a string of
miraculous cancellations not enforced by a manifest sym-
metry and visible only after the meticulous application of
equations of motion [2]. Lacking an explicit Lagrangian
symmetry, the authors of [2] conjectured an underlying
“holomorphy” of the standard model effective theory.

The cancellations in [2] are a direct consequence of
the non-renormalization theorems in Eq. (5) and Eq. (6),
based on a classification of holomorphic (w < 4), anti-
holomorphic (w < 4), and non-holomorphic operators
(w,w ≥ 4), and violated only by exceptional amplitudes
(w,w = 2) generated by non-holomorphic Yukawas. The
shaded entries in Tab. II denote zeroes enforced by our
non-renormalization theorems. Entries marked with ×
trivially vanish because there are no associated Feynman
diagrams, while entries marked with ×∗ vanish because
the expected divergences in ψ2φ3 and φ6 are accompa-
nied by a counterterm of the form φ4D2 [4] which is
forbidden by our non-renormalization theorems.

The superfield formalism offers an enlightening albeit
partial explanation of these cancellations [16] and anal-
ogous effects in chiral perturbation theory [17]. These
results are clearly connected to our own via the “effec-
tive” supersymmetry of tree-level QCD [18], and merits
further study.

CONCLUSIONS

We have derived a new class of one-loop non-
renormalization theorems for higher dimension opera-
tors in a general four-dimensional quantum field theory.
Since our arguments follow from unitarity and helicity,
they are broadly applicable and explain the peculiar can-
cellations observed in the dimension six renormalization
of the standard model.

Non-renormalization at higher loop orders remains an
open question. However, Eq. (5) will likely fail at two-
loop since helicity selection rules are violated by finite
one-loop corrections [19]. Another avenue for future
study is higher dimensions, where helicity is naturally
extended [20] and dimensional reduction offers a bridge
to massive theories. Finally, it would be interesting to
link our results to conventional symmetry arguments like
those of [16]. Indeed, our definition of weight is remi-
niscent of both R-symmetry and twist, which relate to
existing non-renormalization theorems.
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