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We present a method for estimating the probabilities of outcomes of a quantum circuit using Monte
Carlo sampling techniques applied to a quasiprobability representation. Our estimate converges to
the true quantum probability at a rate determined by the total negativity in the circuit, using a
measure of negativity based on the 1-norm of the quasiprobability. If the negativity grows at most
polynomially in the size of the circuit, our estimator converges efficiently. These results highlight
the role of negativity as a measure of non-classical resources in quantum computation.

Estimating the probability of a measurement outcome
in a quantum process using only classical methods is
a longstanding problem that remains of acute interest
today. Directly calculating such probabilities using the
Born rule is inherently inefficient in the size of the quan-
tum system, and efficiently estimating such probabilities
for a generic quantum process is expected to be out of
reach of classical computers.

Nonetheless, there are interesting and nontrivial
classes of quantum circuits for which we can efficiently
estimate the probabilities of outcomes. The canonical
example of such a class is that of stabilizer circuits. Such
circuits can create highly-entangled states and perform
many of the fundamental operations involved in quantum
computing (teleportation, quantum error correction, dis-
tillation of magic states) but the celebrated Gottesman-
Knill theorem allows such circuits to be classically sim-
ulated efficiently [1]. Other examples include fermionic
linear optics/matchgates [2, 3], and some classes of quan-
tum optics [4–6]. While these methods may be extended
to include bounded numbers of operations outside of the
class (for example, Ref. [1]), such extensions generally
treat all operations outside of the class on an equal foot-
ing (for example, the cost of adding noisy magic states
is the same as adding pure magic states) and so do not
provide any insight into the relative resources of different
operations.

In this Letter, we present a general method for esti-
mating outcome probabilities for quantum circuits us-
ing quasiprobability representations. Simulation meth-
ods based on quasiprobability representations have a long
history in physics [7], and have recently been used in
quantum computation to identify classes of operations
that are efficiently simulatable [8–10]. Our method al-
lows for estimation in circuits wherein the quasiprobabil-
ities may go negative. That is, while making the most
efficient use of circuit elements that are represented non-
negatively, it nonetheless provides an unbiased estima-
tor of the true quantum outcome probability regardless
of the inclusion of more general elements that are nega-
tively represented. We quantify the performance of this

method by providing an upper bound on the rate of con-
vergence of this estimator that scales with a measure of
the total amount of negativity in the circuit.

Probability estimation.—Consider quantum circuits of
the following form. The circuit initiates with N qudits
(d-level quantum systems) in a product state, evolves
through a circuit consisting of L = poly(N) elementary
gates that act nontrivially on at most a fixed number of
qudits (for example, 1- and 2-qudit gates), and termi-
nates with a product measurement, i.e., an independent
measurement of each qudit. Universal quantum compu-
tation can be achieved with circuits of this form. Note
that we do not include circuits with intermediate mea-
surements and conditional operations based on their out-
puts (we return to this consideration in the discussion).

We aim to estimate the probability of a fixed outcome
~o = (o1, . . . , oN ) where oj denotes the outcome of the
measurement on the jth qudit. (Note that estimation of
the probability of a fixed outcome is distinct from a sim-
ulation as in Refs. [8, 9], wherein different outcomes are
sampled from this distribution.) A natural benchmark
for the precision of an estimator is the precision that can
be obtained from sampling the quantum circuit itself. If
we had access to a quantum computer that implemented
a circuit in this class, then we could use it to estimate
the probability of a fixed outcome by computing the ob-
served frequency fs(~o) of outcome ~o over s samples. By
the Hoeffding inequality, fs(~o) will be within ε of the
quantum probability p(~o) with probability 1−δ provided
the number of samples s(ε, δ) satisfies

s(ε, δ) ≥ 1
2ε2 log (2/δ). (1)

This bound implies that for any fixed δ, the number
of samples required to achieve ε error scales polynomi-
ally in 1/ε. We call estimators satisfying this property
poly-precision estimators. (We distinguish these from
exponential-precision estimators, defined as estimators
for which s(ε, δ) scales logarithmically in 1/ε.)

Our central results are a classical algorithm that pro-
duces a poly precision estimate of a quantum circuit in
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the above class, and a bound on the efficiency of this al-
gorithm based on a measure of the circuit’s negativity in
a quasiprobability representation.

Quasiprobability representations.—A quasiprobability
representation of a qudit over Λ is defined [11, 12] by
a frame {F (λ) : λ ∈ Λ} and a dual frame {G(λ) :
λ ∈ Λ}, which are (generally over-complete) bases for
the space of Hermitian operators acting on Cd satisfying
A =

∑
λ∈ΛG(λ)Tr[AF (λ)] for all A. The space Λ can

be continuous or discrete, and although many quasiprob-
ability representations assume a phase space (symplec-
tic) structure on Λ, this is not necessary. We can de-
fine quasiprobability distributions on Λ associated with
a quantum state ρ, a unitary operator U and a measure-
ment effect E to be

Wρ(λ) = Tr[F (λ)ρ] ,

WU (λ′|λ) = Tr(F (λ′)UG(λ)U†) ,

W (E|λ) = Tr[EG(λ)] . (2)

Tensor products of these dual frames gives a dual frame
for the product space, and so these definitions extend
in the obvious way from a tensor product (Cd)⊗N of N
qudits to distributions on a phase space ΛN .

The distribution Wρ(λ) is real-valued and satisfies∑
λ∈ΛWρ(λ) = 1, much like a probability distribution, if

the frame is normalized using
∑
λ∈Λ F (λ) = I. Similarly,

the distributions WU (λ′|λ) and W (E|λ) are normalized
like corresponding conditional probabilities. The Born
rule Pr(E|ρ, U) = Tr(EUρU†), which gives the quantum
probability for a measurement outcome given the state
and process, is reproduced in the quasiprobability repre-
sentation as would be expected in a probabilistic theory,
by

Pr(E|ρ, U) =
∑

λ,λ′∈Λ

W (E|λ′)WU (λ′|λ)Wρ(λ) . (3)

This equation follows from the Born rule using the defi-
nition of the dual frames.

Importantly, the distributions of a quasiprobability
representation will generally take on negative values, and
so cannot be directly interpreted as probability distribu-
tions. The 1-norm of a quasiprobability distribution pro-
vides a natural measure of the amount of negativity, i.e.,
how much it deviates from a true probability distribu-
tion. We define the negativity Mρ of a state ρ as the
1-norm of its quasiprobability representation,

Mρ = ||Wρ||1 =
∑
λ∈Λ

|Wρ(λ)| . (4)

(The mana of a state using the discrete Wigner repre-
sentation was introduced in Ref. [13] as a measure to
bound the resources required for magic state distillation,
and defined as the logarithm of the negativity used here.)

Analogously, we define the negativity ME of a measure-
ment effect E to be

ME =
∑
λ∈Λ

|W (E|λ)| , (5)

and the point-negativity MU (λ) and negativity MU of a
unitary U to be

MU (λ) =
∑
λ′∈Λ

|WU (λ′|λ)| , MU = max
λ∈Λ
MU (λ) , (6)

respectively. The negativities for states, unitaries and ef-
fects are lower-bounded by 1, 1 and Tr(E) respectively,
with equality if and only if the quasiprobability repre-
sentation is nonnegative. These negativities will serve
as a measure of the cost of each circuit element in our
estimator.

Estimation procedure.—A quasiprobability representa-
tion provides an interpretation of the Born rule as the
expectation value of a stochastic process. Specifically,
if the quasiprobability representation of all elements in
the circuit are nonnegative, then one may interpret the
Born rule of Eq. (3) as the expected probability of the
measurement outcome averaged over a set of trajectories
through phase space [8, 9]. This stochastic interpreta-
tion no longer holds if the quasi-probability representa-
tion for any of the input states, gates, or measurements
is negative. A standard perspective is that, in a quan-
tum description, different trajectories in phase space can
be assigned negative weights and can interfere with each
other [10]. Monte Carlo sampling techniques may still
be used, but the key problem is to identify an appropri-
ate distribution to sample trajectories λ = (λ0, . . . , λL)
through phase space, where λ0 is associated with the
preparation and λl and λl−1 are associated with the lth
unitary. Eq. (3) becomes Pr(E|ρ, U) =

∑
λW (λ) with

W (λ) = W (E|λL)
[∏L

l=1WU (λl|λl−1)
]
Wρ(λ0) . (7)

Using an approach reminiscent of quantum Monte Carlo
methods for fermion systems, we could sample trajec-
tories from a true (nonnegative) probability distribution
obtained from the absolute value of the quasiprobabil-
ity, keeping track of the sign of the sampled trajectory.
Consider the distribution of trajectories given by

Pr(A = λ) =
|W (λ)|
Mc

(8)

where Mc =
∑

λ |W (λ)| measures the negativity of the
entire circuit, and we regard λ as a realization of a ran-
dom variable A. An estimate based on a single real-
ization λ is given by q̂1(λ) = Mc Sign[W (λ)], where
Sign[·] = ±1 depending on the sign of the input. The
expected value of this estimate gives the desired Born
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rule probability

〈q̂1(A)〉 =
∑
λ

q̂1(λ)Pr(A = λ) =
∑
λ

Sign[W (λ)]|W (λ)|

=
∑
λ

W (λ) = Pr(E|ρ, U) . (9)

Note that this estimator minimizes the range of A [10],
and so provides the best bound on the number of samples
required to obtain a fixed precision using the Hoeffding
inequality. Sampling from the distribution (8) is also the
optimal estimator over the space of trajectories in that
it has the smallest variance (see Supplementary Informa-
tion). Unfortunately, without any additional structure,
this estimator will in general be impractical for two rea-
sons: there is no known efficient method to computeMc,
and sampling from the distribution (8) will in general be
inefficient in N .

To develop an efficient procedure, we sample trajecto-
ries λ following a Markov chain, using (true) probabilities
and conditional probabilities at each timestep. Consider
an input product state ρ = ⊗Nn=1ρn, which has an ef-
ficient description Wρ(λ) in the quasi-probability repre-
sentation which may be negative. We sample the initial
point of the trajectory λ0 from the modified distribution
Pr(λ0) = |Wρ(λ0)| /Mρ. We construct a full trajectory
λ by sampling λl at each timestep l = 1, . . . , L in the
circuit from the conditional distribution Pr(λl|λl−1) =
|WUl

(λl|λl−1)| /MUl
(λl−1) given by the unitary gate Ul.

If the unitary Ul at each timestep l of the circuit has an
efficient description in the quasi-probability representa-
tion, for example it consists of quantum gates acting on
a fixed number of systems, then this distribution can be
sampled efficiently. We note that this efficiency comes
at a cost, as trajectories are no longer sampled from the
optimal distribution (8).

An estimate p̂1 based on a single trajectory λ of our
Markov chain protocol is given by

p̂1(λ) =MρSign[Wρ(λ0)]

×∏L
l=1

[
MUl

(λl−1)Sign[WUl
(λl|λl−1)]

]
W (E|λL) .

(10)

Unlike q̂, this estimate is guaranteed to be an efficiently
computable function of the sampled path λ. We note
that p̂1 can lie outside the unit interval, but nonetheless
gives an unbiased estimate of the Born rule probability,
〈p̂1(A)〉 = Pr(E|ρ, U), precisely as in Eq. (9). Further,
we note that p̂1 lies in the interval [−M→,+M→], where
we have defined M→ to be the total forward negativity
bound of the circuit:

M→ =Mρ

∏L
l=1MUl

maxλL
|W (E|λL)| . (11)

Let p̂s be the average of p̂1 over s independent samples of
λ. Using the boundedness and unbiasedness properties

of p̂1, the Hoeffding inequality yields an upper bound on
the rate of convergence of the average p̂s. Specifically, p̂s
will be within ε of the quantum probability Pr(E|ρ, U)
with probability 1− δ if a total of

s(ε, δ) = 2
ε2M2

→ ln(2/δ) (12)

samples are taken. Consequently, if the total for-
ward negativity bound M→ grows at most polynomi-
ally with N , then our protocol gives an efficient esti-
mate p̂s of the quantum probability Pr(E|ρ, U) to within
ε = 1/poly(N), with an exponentially small failure prob-
ability. That is, for circuits with a polynomially-bounded
total forward negativity bound, p̂s is a poly-precision es-
timator of the Born rule probability and we can sam-
ple p̂s efficiently in N . We note that the total for-
ward negativity bound M→ of (11) is insensitive to the
measurement negativityME , instead depending only on
maxλL

|W (E|λL)|.
Any efficiently computable symmetry of the Born rule

can be used to give a variant on the procedure defined
above. The rate of convergence of the estimator need not
be symmetric under these Born rule symmetries, and so
such a variant may provide an advantage. Two exam-
ples of such symmetries – the time reversal symmetry
that exchanges states and measurement effects in a uni-
tary circuit, and the regrouping of unitaries into different
elementary gates – are explored in the Supplementary In-
formation. In particular, a variant procedure is presented
for which the total negativity bound is insensitive to the
negativity of the initial state Mρ.
Example: Estimation with the discrete Wigner

function.—The odd-d qudit stabilizer subtheory and the
associated discrete Wigner function provide a canonical
example for demonstrating the use of our algorithm; see
also Ref. [10]. Using this discrete Wigner representa-
tion for our estimation algorithm, the nonnegativity of
the stabilizer subtheory [14, 15] ensures that stabilizer
states, gates, and rank-1 measurements have negativity
Mρn/Ul/En

= 1 and so are “free” resources. Moreover,
due to the existence of nonnegatively represented opera-
tions that are not in the stabilizer polytope [8], our ap-
proach is efficient on a strictly larger set of circuits than
those of Ref. [1]. Circuits with operations possessing neg-
ativity strictly greater than 1, such as magic states and
non-Clifford gates, can still be estimated but now come
at a cost. Provided the total negativity bound grows at
most polynomially in N , our protocol provides an effi-
cient estimator.

As an example, consider a circuit with an input state
given by a product state of k qutrit magic states 1√

3
(|0〉+

ξ|1〉 + ξ8|2〉), with ξ = exp(2πi/9), together with stabi-
lizer |0〉 states in a 100-qutrit random Clifford circuit,
and estimate the probability of measuring |0〉 on the first
qutrit of the output. The total forward negativity bound
of this circuit scales exponentially in k and consequently
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FIG. 1: (Color online) Plot of the difference p̂s−〈p̂〉 between
the estimated probability and the true probability of the out-
come |0〉〈0| for the first qutrit as a function of the number
of magic states k. Each data point represents a random 100-
qutrit Clifford circuit with the non-magic states initialized to
the |0〉 state. The number of samples s(k) was chosen us-
ing Eq. (12) with target precision ε = 0.01 (indicated by the
solid line) with 95% confidence (δ = 0.05), so the number of
samples increases exponentially with k (color scale).

the number of samples required to guarantee a fixed pre-
cision scales exponentially in k by Eq. (12). The results
of our numerical simulations, shown in Fig. 1, indicate
that our estimator does indeed converge with an appro-
priately chosen number of samples. Moreover, while the
true precision of p̂s in our simulations is often orders of
magnitude better than the target precision, there are cir-
cuits that come close to saturating the target precision,
suggesting that our bound cannot be substantially im-
proved without further detailed knowledge of the circuit.

Discussion.—Our results highlight the role of the total
negativity of a circuit as a resource required for a quan-
tum computer to outperform any classical computer. In
particular, any circuit element that is represented non-
negatively does not contribute to the total negativity
bound and can be viewed as a “free” resource within
the algorithm. Other circuit elements have an associated
cost quantified by their negativity, unless they appear at
the final timestep of the algorithm. This latter observa-
tion motivates us to exploit the time-reversal and other
symmetries of the Born rule, seeking to minimize the to-
tal forward (or reverse) negativity bound. In particular,
one could seek equivalent circuits wherein negative op-
erations can be replaced with nonnegative ones by using
negative initial states or measurements via gate telepor-
tation. By choosing the forward or reverse procedure as
appropriate, the efficiency can be made insensitive to the
negativity of these initial states or measurements.

It also motivates us to identify quasiprobability rep-
resentations in which many of the circuit elements of
interest are represented nonnegatively. Interesting and

relevant examples abound, beyond the well-studied qu-
dit discrete Wigner function. Discrete Wigner functions
for qubits (d = 2) can be defined for which all stabi-
lizer states with real coefficients (rebits) and all CSS-
preserving unitaries are nonnegatively represented [16].
The range of quasiprobability representations introduced
in Ref. [17] represent discrete subgroups of U(2) on a
single qubit nonnegatively, but have no nonnegative en-
tangling gates; as such representations can represent cer-
tain non-stabilizer single-qubit states nonnegatively, they
may be useful for estimation in circuits for gate synthesis.
There is also flexibility in how a quasiprobability repre-
sentation is defined. For example, a given quasiproba-
bility representation can be modified to describe more
states nonnegatively at the expense of a decreasing set of
nonnegative measurements, and vice versa, by exploiting
the structure of the dual frames. Overcomplete frames
provides freedom in the choice of dual frame, and the neg-
ativity of unitaries and measurements will depend on this
choice. As the dual frames formalism itself captures the
relationship between quantum states and measurements,
there is also freedom in the definition of the quasiprob-
ability representation of unitaries beyond that given by
Eq. (2). Finally, again using the freedom in the choice
of dual for overcomplete frames, it is possible to switch
between frames throughout a single circuit. These free-
doms can be used to minimize the total negativity bound
of the circuit, allowing more efficient estimators.

Our procedure can be applied to infinite-dimensional
Hilbert spaces using any of the range of quasiprobabil-
ity representations with continuous phase spaces devel-
oped in the study of quantum optics, by performing an
appropriate discretization as in Ref. [5]. In this case,
the negativity of distributions is quantified by integrat-
ing the absolute value of the distributions over the phase
space, and is directly related to the volume of negativ-
ity [18]. We note that the resulting estimator can be
applied to quantum optics experiments including states
and measurements with negative Wigner function, such
as photon number Fock states, and so may provide addi-
tional insight into the classical simulation cost of boson
sampling [19]. While there exist means to efficiently es-
timate the outcome probability of a specific linear optics
circuit with Fock state input and measurement [6], our
estimation procedure extends these results by providing
a general method for estimating outcome probabilities of
such linear optical circuits for any input and output to-
gether with a bound on the efficiency of this estimation
based on the volume of negativity of these states. In
addition, our estimation can easily incorporate squeez-
ing, as well as the loss and noise mechanisms common to
linear optics experiments.

There are two natural ways to extend our results to
circuits that include intermediate measurements and con-
ditional operations based on them. First, one could re-
place the measurement and conditional operation with a
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coherently-controlled operation, and delay the measure-
ment to the end. We note that such controlled operations
can be negative, even if the measurement and classically-
controlled operation are both nonnegative. Second, our
algorithm can be used to directly estimate the proba-
bilities of the intermediate measurements and to sample
from them. In this case, the required precision is expo-
nential in the number of intermediate measurements in
order to calculate conditional probabilities for subsequent
use in the algorithm. Thus, in general, both approaches
require resources that are exponential in the number of
intermediate measurements.

Finally, our estimation procedure provides insight into
the study of operationally meaningful measures of non-
classical resources in quantum computation. Negativity
in a quasiprobability representation has long been used
as an indicator of quantum behaviour, but only recently
has it been quantified as a resource for quantum com-
putation [13]. Our results provide a related operational
meaning of this resource: as a measure that bounds the
efficiency of a classical estimation of probabilities.
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