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Thomas and Lindner Reply: Pikovsky raises three
points: (1) A 2d linear system (x, y) with a stable focus,
driven by noise, would not constitute a “limit-cycle-like”
oscillator; it would not admit a “good foliation”. There-
fore a phase could not meaningfully be assigned to this
system. But our method would nevertheless assign the
phase φ = tan−1(y/x). (2) For a multirhythmic system,
consisting of a noisy limit cycle (the “true” oscillator in
Pikovsky’s view) and a 2d quasicycle [6] , as under (1),
our method may pick the “wrong” phase if the 2d per-
turbation is not as noisy as the limit cycle, with respect
to its phase. (3) The method based on the mean first
passage time (MFPT) [3] would avoid this problem and
always pick out the correct phase. We rebut each of these
criticisms in turn.

(1) Our definition of the asymptotic phase [2] applies
to a broad class of stochastic oscillations, including, but
not limited to, the important example of limit cycles per-
turbed by noise. In [2] we considered, for instance, a het-
eroclinic 2d system that does not possess a limit cycle in
the deterministic limit. Pikovsky’s first example, a spiral
focus with additive noise

ẋ = −γx+ ωy + ξx, ẏ = −ωx− γy + ξy, (1)

with 〈ξa(t)ξb(t
′)〉 = 2Dδa,bδ(t − t′), is another system

with noise-sustained stochastic oscillations lacking an un-
derlying deterministic limit cycle. In the noisy under-
damped case (γ/ω � 1) such systems are nevertheless
strongly oscillatory, have power spectra with well-defined
peaks, and can be described reasonably well with a phase
variable (see the red line in Fig.1 and e.g. [7] for a study
of the phase dynamics of a related system).

(2) Can a method designed to pick out one phase
from a stochastic system succeed if there are several
oscillations present? Obviously, neither our method
nor the MFPT approach will unambiguously identify a
unique phase reduction for arbitrary multirhythmic sys-
tems. Nevertheless, it is instructive to look in detail
at Pikovsky’s example of a rotating Ornstein-Uhlenbeck
process, eq. (1), combined with an additional rotation:

θ̇ = Ω + ξθ. (2)

Here ξθ is white Gaussian noise with 〈ξθ(t)ξθ(t′)〉 =
2D′δ(t − t′). Our method applies to “robustly oscilla-
tory” systems, i.e. those that satisfy three criteria [2]
(Pikovsky’s Comment notes condition i, but overlooks
conditions ii-iii): i. The nontrivial eigenvalue pair of the
adjoint Kolmogorov operator, λ± = α ± iβ, with least
negative real part, must have β 6= 0. ii. The oscillation
is fast relative to the decay, |β| � −α. iii. For all other
nontrivial eigenvalues λ′, we require <[λ′] ≤ 2α. For the
system (1,2) there are two cases satisfying these criteria.

Case I: If γ ≥ 2D′ > 0 and Ω� D′, then λ = −D′ ±
iΩ. The corresponding eigenfunction (EF) has phase θ.
Case II: If D′ ≥ 2γ > 0 and ω � γ, then λ = −γ±iω.

The corresponding EF has phase φ = tan−1(y/x).

Fig. 1 plots θ (black trace) and φ (red trace) for a tra-
jectory with parameters γ = 0.02, ω = 6, D = 0.02,Ω = 1
and D′ = 0.4, i.e. falling in Case II. While the system is
multirhythmic, φ is clearly the more coherent phase vari-
able. What our method does in this case is to pick the
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FIG. 1: Two stochastic “phase” variables for eqs. (1)-(2).
Black: θ(t). Red: φ(t) = tan−1(y(t)/x(t)).

least noisy of the two possible phases, which is certainly
a reasonable choice if no other constraints are set.

(3) Pikovsky asserts without proof that the MFPT
method would identify θ as the phase variable for the
system (1,2). However, for every pair of integers k, k′

(excluding k = k′ = 0) the surfaces {kθ + k′φ = const}
provide a family of sections satisfying the MFPT prop-
erty (see our original Reply [4] to Pikovsky’s original
Comment [5] for details). In particular, the surfaces
{φ = const} define a system satisfying the MFPT prop-
erty.

Multirhythmicity is common in stochastic physical and
biological systems. In many situations the context dic-
tates what notion of phase is relevant. For instance, in [4]
we showed that the persistent sodium—potassium model
driven by channel noise [1, 2] can exhibit sustained sub-
threshold oscillations alternating with large amplitude
limit cycle oscillations (action potentials). Under these
conditions the eigenvalue spectrum of the adjoint equa-
tion [2] has two complex eigenvalue pairs with similar real
parts. The system violates our criterion iii, and we do not
expect it to have a single well defined phase. Instead, our
method points to the coexistence of two phase-like vari-
ables each determined by a different slowly decaying os-
cillatory eigenmode. Here, the phase associated with the
action potentials (APs) may be regarded as the impor-
tant one because APs are believed to carry information
from one neuron to the other one. This type of interpre-
tation, however, lies beyond the scope of our method.
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