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ABSTRACT 

Exciton is one of the most crucial physical entities in the performance of 

optoelectronic and photonic devices, and widely varying exciton binding energies 

have been reported in different classes of materials. Using first-principles calculations 

within the GW-Bethe-Salpeter equation approach, here we investigate the excitonic 

properties of two recently discovered layered materials, phosphorene and graphene 

fluoride. We first confirm large exciton binding energies of respective 0.85 eV and 

2.03 eV in these systems. Next, by comparing these systems with several other 

representative two-dimensional materials, we discover a striking linear relationship 

between the exciton binding energy and the band gap, and interpret the existence of 

the linear scaling law within a simple hydrogenic picture. The broad applicability of 

this novel scaling law is further demonstrated using strained graphene fluoride. These 

findings are expected to stimulate related studies in higher and lower dimensions, 

potentially resulting in a deeper understanding of excitonic effects in materials of all 

dimensionalities. 

PACS numbers: 71.35.−y, 73.22.−f, 78.67.−n   
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An exciton is a pair of electron and hole mutually bound together by an attractive 

electrostatic force, and is also one of the most important physical quantities in 

designing different kinds of optoelectronic, photonic, and catalytic devices [1-4]. The 

precise binding energy of an exciton, given by the amount of energy required to 

separate an excitonic electron-hole pair, is a key measure of excitonic effects within a 

given system. It is thus highly desirable to determine accurately the exciton binding 

energies of various materials. 

In three-dimensional (3D) systems such as bulk semiconductors, the exciton 

binding energies are typically only a few tens of meV, indicating weakly bound 

excitons due to effective electronic screening. In systems of reduced dimensionalities, 

the electronic screening is less effective, potentially resulting in more strongly bound 

excitons. Indeed, the exciton binding energies of several 1D and 2D materials [5-7] 

are at least an order of magnitude larger than those of bulk semiconductors, making 

excitonic effects more pronounced. In retrospect, each time a new and significant low-

D material was discovered, its corresponding excitonic behavior would be routinely 

exploited on a timely manner, using state-of-the-art computational and experimental 

approaches. Successful examples in the 2D cases include a hexagonal BN sheet [6], 

graphane [8], monolayered MoS2 [9], and the special case of semi-metallic graphene 

[10], using first-principles calculations within the GW-Bethe-Salpeter equation (GW-

BSE) approach [11-14]. Results from such state-of-the-art studies are also expected to 

stimulate related experimental explorations. 

In this Letter, we first use the GW-BSE approach to investigate the excitonic 

properties of two recently discovered 2D materials, phosphorene [15,16] and 

graphene fluoride [17,18]. Our results show that both systems have direct quasi-

particle (QP) band gaps, given by 2.26 eV and 7.70 eV for phosphorene and graphene 
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fluoride, respectively; the corresponding exciton binding energies are 0.85 eV and 

2.03 eV, confirming that both of the layered materials possess strongly bound excitons 

as expected or reported recently [19-22]. More importantly, by putting these two 

systems into a collective perspective with several representative 2D systems, we 

discover a striking linear relationship between the exciton binding energy and the QP 

band gap, whose underlying physical reason is further revealed within a simple 

hydrogenic model. Using strained graphene fluoride as an example, we also 

demonstrate the broad applicability of the novel scaling law to many existing and 

future 2D materials. These findings will stimulate related studies in higher- and 

lower-dimensional materials, potentially resulting in a deeper understanding of 

excitonic effects in materials of all dimensionalities. 

The density functional theory calculations [23] were carried out using the 

projector-augmented wave method [24,25] and the Perdew-Wang (PW91) [26] 

exchange correlation functional as implemented in the Vienna ab-initio simulation 

package [27]. The energy cutoff for the plane-wave basis set is 400 eV. All atoms are 

allowed to fully relax until the forces exerted on each atom are less than 0.02 eV/Å. 

The optimized atomic structures [Figs. 1(a) and 1(b)] within the PW91 scheme are 

used in the following GW-BSE calculations: the obtained lattice parameters are a = 

4.63 Å, b = 3.32 Å for phosphorene, and a = b = 2.60 Å for graphene fluoride. The 

GW calculations were performed in a partially self-consistent way (the so-called GW0 

approach) [14]. For both phosphorene and graphene fluoride, two self-consistent 

updates for the Green's function (the G2W0 approach) were sufficient to converge the 

QP band gap to within 10 meV. The energy cutoff for the response functions was set 

to be 266.7 eV, and the obtained band gap is essentially the same if a higher cutoff of 

333.3 eV is used. To plot the QP band structures, we use the approach of maximally 
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localized Wannier functions [28]. The corresponding optical gap was obtained by 

solving the BSE on top of the GW results. The BSE calculations were performed 

using the ten highest valence bands and ten lowest conduction bands of each system. 

In order to obtain the accurate QP band gaps, it is vital to carefully examine the 

convergence of the QP bands in the GW calculations. In a recent GW study, the QP 

bands of ZnO were shown to converge very slowly with the number of unoccupied 

bands included [29]. The slow convergence is attributed to the existence of highly 

localized states characterized by relatively flat bands [29]. Fortunately, phosphorene 

and graphene fluoride possess no such highly localized bands, and the QP band gaps 

converge rapidly with respect to the number of unoccupied bands. Specifically, 181 

and 182 unoccupied bands are sufficient for graphene fluoride and phosphorene, 

respectively. Due to long-range Coulomb interactions, the spatial separation Lz 

between the 2D sheets needs to be examined for convergence as well [6,30,31]. 

Figures 1(c) and 1(d) show the dependence of the QP band gap on the inverse spatial 

separation for phosphorene and graphene fluoride, respectively. Here, we use 

11×15×1 and 15×15×1 k-point meshes for each system, which are also tested for the 

convergence of the GW-BSE calculations. Since the QP band gap converges as 1/Lz 

[30,32], we extrapolate the gaps to the limit of infinite Lz. The extrapolated band gaps 

are in close agreement with those from the Coulomb truncation scheme [31] within 

~0.1 eV, as discussed in the Supplemental Material [33]. For both systems, Lz of 30 Å 

provides well-converged QP band gaps, while the optical gap is already well 

converged with Lz of only 10 Å. The QP band structures and optical absorption 

spectra were all obtained with Lz = 30 Å. More details about the convergence tests are 

given in the Supplemental Material [33]. 

We first investigate the electronic and optical properties of phosphorene using the 



1

 

 

GW-BSE approach. As seen in Fig. 2(a), phosphorene is a relatively wide-gap 

semiconductor with a direct gap at the Γ point. The QP band gap obtained by 

extrapolation is 2.26 eV. The effective masses of electron and hole can be estimated 

by fitting the QP bands to the parabolic form of ħ . The estimated electron 

effective masses are highly anisotropic, given by 0.46 me in the armchair direction 

[along x in Fig. 1(a)] and 1.12 me in the zigzag direction [along y in Fig. 1(a)], where 

me is the electron rest mass. The corresponding hole effective masses are also highly 

anisotropic, given by 0.23 me and 1.61 me along the x and y direction, respectively. 

Figure 2(b) shows the calculated optical absorption spectrum of phosphorene for 

light polarized along the armchair direction. The optical gap is 1.43 eV, indicated by 

the first peak of the absorption spectrum. The first peak along the zigzag direction is 

located at 3.31 eV (not shown). By extrapolating to the limit of infinite Lz, we obtain 

the optical gap of 1.41 eV, which agrees well with the experimental value of 1.45 eV 

[16]. The corresponding exciton binding energy defined by the energy difference 

between the QP band gap and the optical gap is 0.85 eV, confirming strongly bound 

excitons in such a 2D material. The exciton binding energy obtained here is very close 

to that (~0.8 eV) reported in a recent GW-BSE study [19]. 

We next investigate the electronic and optical properties of graphene fluoride. 

Here, we consider only the chair configuration [Fig. 1(b)], which is the most stable 

structure of graphene fluoride [34]. We find that graphene fluoride has a direct band 

gap at the Γ point [Fig. 3(a)], which is extrapolated to be 7.70 eV. We note that the QP 

band gap is considerably larger than that (7.49 eV) obtained by a similar GW0 

approach [35]. This difference is likely caused by the smaller spatial separation Lz 

employed in the previous GW calculation (15 Å), which is insufficient to converge the 

QP bands as clearly seen in Fig. 1(d). The estimated effective masses are isotropic, 
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given by 0.61 me and 0.58 me for electron and hole, respectively. A detailed analysis 

of the projected densities of states (PDOS) on the constituent atoms reveals that both 

the valence band maximum (VBM) and conduction band minimum (CBM) are fairly 

evenly distributed on the C and F atoms: 53% on C and 47% on F for the VBM, and 

49% on C and 51% on F for the CBM. The calculated optical absorption spectrum for 

graphene fluoride is displayed in Fig. 3(b). The optical gap is 5.67 eV, consistent with 

the values of 5.4 eV ~ 5.6 eV from two previous GW-BSE studies [20,21]. These 

values are much higher than the lower limit of ~3.8 eV measured in a recent 

experiment [18], while a separate GW-BSE study reported almost the same optical 

gap as experimentally observed [22]. As discussed previously [20,21,34], the 

discrepancy in the optical gap between theory and experiment could be ascribed to the 

effects of corrugation and defects in the graphene fluoride samples, which may create 

mid-gap states, effectively narrowing the optical gap. The corresponding exciton 

binding energy is 2.03 eV, indicating even more strongly bound excitons in this wider 

band-gap 2D material.  

Next we explore the relationship between the exciton binding energy and the QP 

band gap, by putting the present results of phosphorene and graphene fluoride into a 

collective perspective with the previous findings of other representative 2D materials 

such as graphane, monolayered MoS2 [9], SiC and BN sheets. Here the convergence 

issue of exciton binding energy has been more distinctly recognized only recently, we 

have repeated most of the calculations for such systems (including the previously 

studied ones), but with mutually comparable higher accuracy. It is worthwhile to 

emphasize that, whereas graphane and a SiC sheet both possess direct band gaps, a 

BN sheet has an indirect band gap, as indicated in Figs. S3-S5 of the Supplemental 

Material [33]. More detailed GW-BSE results for the other 2D materials are given in 
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the Supplemental Material [33]. In Fig. 4, we display the binding energies (Eb) and 

the band gaps (Eg) of those 2D materials. Strikingly, the data establish a well-defined 

linear dependence, given by Eb = αEg + β, with α = 0.21 and β = 0.40. Figure 4 

suggests that, when the QP band gap is below 0.5 eV, the exciton binding energy 

could be larger than the band gap in such 2D systems, even implying the possible 

existence of excitonic effects in 2D or quasi-2D metals due to incomplete or non-

instantaneous screening [36]. In this regime, various scattering mechanisms of 

excitons with other degrees of freedom are also expected to play more important roles 

in leading to exciton relaxation, an intriguing aspect beyond the scope of the present 

study. These data were drawn from both strongly anisotropic and isotropic example 

systems, yet they all obey the same scaling law. Qualitatively, larger band gaps imply 

weaker screening, which in turn should lead to stronger binding within an electron-

hole pair. The scaling relationship is qualitatively consistent with this expectation, but 

precisely why in 2D it should be linear is conceptually challenging. 

We can examine the applicability of the linear scaling relation in severely strained 

2D systems, as mechanical strain is often applied in tuning the band gap and the 

corresponding electronic and optical properties of materials [37]. Here, we have 

carried out GW-BSE calculations for 10% tensile-strained graphene fluoride, with a = 

b = 2.87 Å. The calculated QP band gap and optical gap are 6.72 eV and 4.92 eV, 

respectively, and the corresponding exciton binding energy is 1.80 eV. The binding 

energy and the band gap again show an excellent agreement with the linear scaling 

law, as highlighted in Fig. 4. Given the wide ranges of both the band gaps and the 

exciton binding energies represented in Fig. 4, and the different classes of systems 

(isotropic or strongly anisotropic), we have a strong basis to expect that the linear 

scaling relation is applicable to essentially all existing and future 2D materials. 
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Here we propose a first-order model interpretation of the linear scaling law. 

According to the hydrogenic model, the exciton binding energy Eb of 2D quantum 

well systems is linearly proportional to μ/ε2, where μ is the reduced mass, and ε is the 

dielectric constant [38]. Because the dielectric constants of 2D layered systems with 

infinitesimal thickness are essentially the same as the vacuum dielectric constant [39], 

we have ε = 1 and Eb ∝ μ for such 2D systems. Separately, within the k·p perturbation 

theory, the effective masses of electron and hole are approximately proportional to the 

band gap Eg with particle-hole symmetry [40], which in turn leads to Eb ∝ μ ∝ Eg. 

Here we note that even if particle-hole symmetry is broken, μ can still be proportional 

to Eg as long as both the electron and hole effective masses are proportional to Eg. It 

should also be noted that, even though the present explanation is based on a very 

simplified model, it does capture the central aspects of the linear scaling relation, and 

is expected to stimulate further efforts on developing more sophisticated model 

interpretations. 

With the establishment of the linear scaling law between the exciton binding 

energy and the corresponding band gap in 2D materials, it is also natural to search for 

possible existence of similar scaling laws in other dimensions. For 3D systems, 

extensive experimental results suggest the existence of an exponential or higher-order 

powered relationship between the exciton binding energy and the band gap [41], even 

though such a relationship has not been explicitly emphasized previously. On the 

other hand, we expect a weaker than linear scaling dependence in 1D systems. This 

trend is indeed qualitatively supported by the limited examples in previous GW-BSE 

studies of carbon and BN nanotubes [5,6]. We also note the prediction and 

experimental confirmation of power law dependences between the exciton binding 
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energy of carbon nanotubes and the tube radius or dielectric constant of the 

surrounding media [42,43]. These intriguing aspects are to be explored systematically 

in future studies. 

In summary, we have used the state-of-the-art GW-BSE approach and a diverse 

range of example systems to establish a well-defined and striking linear scaling law 

between the exciton binding energies and QP band gaps of 2D materials. The 

underlying physical reason of the linear scaling law has been further revealed within a 

simple hydrogenic model based on the k·p perturbation theory. The broad applicability 

of this novel scaling law has also been demonstrated using strained graphene fluoride. 

We expect that the present work will stimulate related studies in higher and lower 

dimensional systems, potentially resulting in a deeper understanding of excitonic 

effects in systems of all dimensionalities. 
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Note added - After the submission of this paper, we become aware of two very recent 

experimental studies of the exciton binding energies in monolayered MoSe2 and WS2 

[44-45]. In particular, after properly correcting substrate effects, both the 

experimentally observed and the GW-BSE calculated exciton binding energies of 

MoSe2 [44] are sufficiently consistent with the expectation of the linear scaling law 

shown in Fig. 4. 
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Figure Captions 

 

Figure 1. (color online). Side (upper panel) and top view (lower panel) of (a) 

phosphorene and (b) graphene fluoride. Each unit cell is indicated by the solid lines. 

(c) and (d): The QP band gap as a function of the inverse spatial separation 1/Lz for 

phosphorene and graphene fluoride, respectively. In (c) and (d), the dots indicate the 

results of the G0W0, G2W0, and BSE calculations, while the dashed lines represent the 

corresponding extrapolations. 

 

Figure 2. (a) Calculated QP band structure and (b) optical absorption spectrum of 

phosphorene. The absorption spectrum for incident light along the armchair direction. 

In (a), the zero energy is set to the valence band maximum. In (b), the positions of the 

first absorption peak and the QP band gap are denoted by the dotted line and the 

arrow, respectively. 

 

Figure 3. (a) Calculated QP band structure and (b) optical absorption spectrum of 

graphene fluoride. 

 

Figure 4. The exciton binding energy (Eb) versus the QP band gap (Eg) for various 

representative 2D materials. The dashed line represents the fitted linear relation in the 

form of Eb = αEg + β, with α = 0.21 and β = 0.40. The fitted data are denoted by the 

filled symbols, while the unfilled data point for strained graphene fluoride helps to 

demonstrate the broad applicability of the scaling relationship. 










