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We construct a phenomenological Landau theory for the two-dimensional helical Fermi liquid
found on the surface of a three-dimensional time-reversal invariant topological insulator. In the
presence of rotation symmetry, interactions between quasiparticles are described by ten independent
Landau parameters per angular momentum channel, by contrast with the two (symmetric and
antisymmetric) Landau parameters for a conventional spin-degenerate Fermi liquid. We project
quasiparticle states onto the Fermi surface and obtain an effectively spinless, projected Landau
theory with a single projected Landau parameter per angular momentum channel that captures the
spin-momentum locking or nontrivial Berry phase of the Fermi surface. As a result of this nontrivial
Berry phase, projection to the Fermi surface can increase or lower the angular momentum of the
quasiparticle interactions. We derive equilibrium properties, criteria for Fermi surface instabilities,
and collective mode dispersions in terms of the projected Landau parameters. We briefly discuss
experimental means of measuring projected Landau parameters.
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The Landau theory of Fermi liquids (FL) [1], or FL
theory for short, is the cornerstone of our understand-
ing of weakly correlated, gapless Fermi systems at low
temperatures, such as 3He atoms in the normal liquid
state and itinerant electrons in metals. FL theory ex-
plains the puzzling observation that despite strong inter-
actions between the constituent fermions, many Fermi
systems behave essentially as free Fermi gases, except for
the renormalization of their physical properties which is
captured by dimensionless quantities known as Landau
parameters. These Landau parameters describe how the
elementary excitations of the FL—the quasiparticles and
quasiholes—interact with one another.

Topological insulators [2] provide new types of gapless
Fermi systems: topological surface/edge states. In the
absence of interparticle interactions, electrons propagat-
ing on the edge of a two-dimensional (2D) topological
insulator [3] form a 1D helical Fermi gas [4]. In the pres-
ence of interactions, the 1D helical Fermi gas becomes
a 1D helical Luttinger liquid [5] with no sharply defined
Fermi points. In 3D topological insulators, surface elec-
trons form a 2D helical Fermi gas [6], which is expected to
evolve adiabatically into a 2D helical FL in the presence
of electron-electron interactions.

This paper presents a FL theory for the interacting
2D surface states of the 3D topological insulator. To
our knowledge, such a helical FL theory has been miss-
ing in the literature despite the recent surge of interest
in the effects of electron-electron interactions in topo-
logical insulators [7]. In the spirit of standard FL the-
ory [1], we focus on systems with a discrete time-reversal
symmetry, the protecting symmetry of topological in-
sulators, as well as continuous translation and spatial
rotation symmetries. We further consider the simplest

case of a single surface Fermi surface—denoted simply
as the Fermi surface in the following—which by rota-
tion symmetry must be circular. This does not apply
to certain topological insulators whose Fermi surface is
strongly anisotropic, such as Bi2Te3 with 0.67% Sn dop-
ing [8] where there are large hexagonal warping effects
due to the rhombohedral crystal structure of the bulk ma-
terial [9]. However, in several other topological insulators
such as Bi2Se3 [10], Bi2Te2Se [11], SbxBi2−xSe2Te [11],
Bi1.5Sb0.5Te1.7Se1.3 [12], Tl1−xBi1+xSe2−δ [13], strained
α-Sn on InSb(001) [14], and strained HgTe [15], the Fermi
surface as observed in angle-resolved photoemission spec-
troscopy (ARPES) is very nearly circular. However,
due to spin-momentum locking in the topological sur-
face states [6]—a consequence of strong spin-orbit cou-
pling, rotation symmetry in a helical FL must neces-
sarily involve spin degrees of freedom, which leads to
a theory rather different from that of the conventional
spin-degenerate FL. Moreover, the existence of a single
nondegenerate Fermi surface—a consequence of the topo-
logical character of the bulk—eventually leads, via the
application of the general principles of FL theory, to an
effectively spinless FL theory. The physical properties
of the resulting helical FL are nevertheless distinct from
those of a truly spinless FL, due to a nontrivial mapping
between physical, spinful quasiparticles, and the effec-
tive, spinless quasiparticles. For the same reason, our
helical FL theory is also qualitatively different from re-
cently constructed FL theories of non-topological spin-
orbit coupled systems such as the Rashba 2D electron
gas [16] and 3D spin-orbit coupled metals [17], which are
characterized by two (spin-split) Fermi surfaces.

FL theory views the many-fermion system as a gas of
elementary excitations above the ground state, the quasi-
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particles. Because translation symmetry is assumed, the
momentum p = (px, py) of the quasiparticles is well-
defined and a configuration of quasiparticles is specified
by a distribution function np. In a conventional FL, spin
is conserved and the distribution function is diagonal in
spin space npσ = 〈c†

pσcpσ〉, where c†
pσ (c

pσ) is a creation
(annihilation) operator for a fermion with momentum p

and spin σ =↑, ↓, but in systems with spin-orbit coupling
such as the helical FL the distribution function is gen-
erally a matrix in spin space, nαβ

p
= 〈c†

pαcpβ〉 [17]. The
central quantity in FL theory is the energy δE of the
gas of interacting quasiparticles relative to the ground-
state energy, expressed as a functional of the deviation

δnαβ
p

≡ nαβ
p

−n(0)αβ
p of the distribution function from its

value in the ground state,

δE[δnp] =

∫

đp hαβ(p)δn
αβ
p

+ 1
2

∫

đp đp′ Vαβ;γδ(p̂, p̂
′)δnαβ

p
δnγδ

p′ , (1)

where (working in units such that ~ = 1)

h(p) = vF ẑ · (σ × p), (2)

is the single-particle Dirac Hamiltonian of the topolog-
ical surface state [2] with vF the Fermi velocity [18],
Vαβ;γδ(p̂, p̂

′) is a reduced two-body interaction that de-
pends only on the unit vector p̂ ≡ p/|p| parameterizing
the Fermi surface, and we denote the integration mea-

sure by
∫

đp ≡
∫

d2p
(2π)2 . The form of Eq. (1) can be

obtained from a generic, translationally invariant inter-
action Vαβ;γδ(k,k

′, q) by requiring that all fermionic mo-
menta lie on the Fermi surface [19].

Our first goal is to derive the most general form of
the two-body interaction Vαβ;γδ(p̂, p̂

′) consistent with the
general principles of quantum mechanics and the symme-
tries of the problem. This goal is most easily achieved by

expanding the two-body interaction as

Vαβ;γδ(p̂, p̂
′) =

3
∑

µ,ν=0

∞
∑

l,l′=−∞
V ll′

µν e
i(lθp+l′θ

p′ )σµ
αβσ

ν
γδ, (3)

where p̂ = (cos θp, sin θp), l, l
′ are angular momentum

quantum numbers, and the set of four 2 × 2 Hermitian
matrices σµ = (1,σ) where 1 denotes the identity matrix
allows us to construct the quasiparticle charge δρp and
spin δsi

p
densities (i = x, y, z),

δρp = σ0
αβδn

αβ
p

= δαβδn
αβ
p
, δsi

p
= 1

2σ
i
αβδn

αβ
p
. (4)

Upon substituting Eq. (3) in Eq. (1), one obtains three
classes of terms: charge-charge interactions proportional
to V ll′

00 , spin-spin interactions proportional to V ll′

ij , and

spin-charge interactions proportional to V ll′

0i = V l′l
i0 .

Time-reversal symmetry implies that the angular mo-
menta l and l′ must differ by an even integer for charge-
charge and spin-spin interactions and by an odd integer
for spin-charge interactions [19].

The main difference between a conventional FL and a
spin-orbit coupled FL such as the helical FL lies in the
consequences of rotation symmetry. The single-particle
Hamiltonian (2) is neither invariant under a spatial ro-
tation nor under a spin rotation, but is invariant under
a simultaneous rotation of spatial and spin coordinates:
[Jz, h(p)] = 0, where Jz = −i ∂

∂θp
+ 1

2σ
z is the total (or-

bital plus spin) angular momentum in the z direction.
Requiring that the interaction term in Eq. (1) be also
invariant under such rotations, we find that it can be
written as the sum of three terms δVcc, δVsc, and δVss,
where [19]

δVcc =
1
2

∞
∑

l=0

∫

đp đp′ f cc
l cos lθpp′δρpδρp′ , (5)

is the charge-charge interaction,

δVsc =

∞
∑

l=0

∫

đp đp′

×
[

(f sc,1
l cos lθpp′ + f sc,2

l sin lθpp′)δρpp̂
′ · δsp′

+ (f sc,3
l cos lθpp′ + f sc,4

l sin lθpp′)δρpp̂
′ × δsp′

]

, (6)

is the spin-charge interaction, and

δVss =
1
2

∞
∑

l=0

∫

đp đp′
{

cos lθpp′

(

f ss,1
l (δsx

p
δsx

p′ + δsy
p
δsy

p′) + f ss,2
l δsz

p
δsz

p′

)

+ f ss,3
l sin lθpp′δsp × δsp′

+ cos lθpp′

(

f ss,4
l [(p̂ · δsp) (p̂′ × δsp′) + (p̂× δsp) (p̂

′ · δsp′)] + f ss,5
l [(p̂ · δsp) (p̂′ · δsp′)− (p̂× δsp) (p̂

′ × δsp′)]
)}

,

(7)
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is the spin-spin interaction. We denote by θpp′ ≡ θp′ −θp
the relative angle between p̂ and p̂′, and write a × b ≡
ẑ · (a× b) for the cross product of two in-plane vectors.

Equations (5)-(7), the first main result of this work,
represent the most general short-range two-body inter-
action in a helical FL consistent with translation, ro-
tation, and time-reversal symmetries. The interaction
is specified by ten real Landau parameters for each
value of the relative angular momentum l = 0, 1, 2, . . .:
one charge-charge parameter f cc

l , four spin-charge pa-

rameters f sc,1
l , . . . , f sc,4

l , and five spin-spin parameters

f ss,1
l , . . . , f ss,5

l . This stands in contrast to the two Lan-
dau parameters f s

l (spin symmetric) and fa
l (spin anti-

symmetric) in a conventional FL [1], which would cor-
respond to f s

l = f cc
l and fa

l = 1
4f

ss,1
l = 1

4f
ss,2
l in

the absence of spin-orbit coupling. In particular, spin-
orbit coupling allows for a nonzero spin-charge inter-
action (6) which would be forbidden by separate spa-
tial and spin rotation symmetries in a conventional FL.
The spin-spin interaction (7) also exhibits novel features:
f ss,1
l 6= f ss,2

l in general, which corresponds to an XXZ
interaction with Ising anisotropy rather than the conven-
tional SU(2)-symmetric Heisenberg interaction; f ss,3

l is

a Dzyaloshinskii-Moriya interaction; and f ss,4
l , f ss,5

l are
anisotropic spin-spin interactions similar to those found
in compass models [20], but with a continuous rather
than discrete spin-orbit rotation symmetry.

While Eq. (5)-(7) in conjunction with Eq. (1) cor-
rectly describe the helical FL, in the spirit of FL the-
ory one can go one step further and only retain elec-
tron states on the Fermi surface. Because of the strong
spin-orbit coupling present in the Dirac Hamiltonian (2),
such electrons are annihilated by the operator ψp± =
1√
2
(ie−iθpcp↑ ± cp↓), where positive (+) helicity corre-

sponds to a positive Fermi energy ǫF > 0 above the Dirac
point, and negative (−) helicity corresponds to a nega-
tive Fermi energy ǫF < 0. Inverting this relation, one can
express the spin eigenoperators cpσ in terms of the helic-

ity eigenoperators ψp± as cp↑ = ie−iθp√
2

(ψp+ + ψp−) and

cp↓ = 1√
2
(ψp+ −ψp−). Choosing ǫF > 0 for definiteness,

the Fermi surface consists exclusively of electron states
of positive helicity, such that one may wish to drop the
negative helicity eigenoperators ψp− entirely from these
expressions for cp↑ and cp↓. Applying this procedure to
Eq. (1) yields a Landau functional for an effectively spin-
less FL theory,

δĒ[δn̄p] =

∫

đp ǫ0
p
δn̄p

+ 1
2

∞
∑

l=0

∫

đp đp′f̄l cos lθpp′δn̄pδn̄p′ , (8)

where ǫ0
p
= vF |p| is the dispersion relation of positive he-

licity quasiparticles, δn̄p = n̄p−n̄(0)
p with n̄p ≡ 〈ψ†

p+ψp+〉
is the distribution function for these quasiparticles, and

f̄l are effectively spinless, projected Landau parameters
related to the ten unprojected Landau parameters previ-
ously discussed by

f̄l = f cc
l − f sc,3

l − 1
4f

ss,5
l

+ 1
8 (f

ss,1
l−1 − f ss,3

l−1 + f ss,1
l+1 + f ss,3

l+1 ), (9)

for l = 0, 1, 2, . . ., with the definition f ss,1
−1 = f ss,3

−1 ≡ 0.
The quasiparticle charge and spin densities (4) are given
in terms of δn̄p by

δρp = δn̄p, δsi
p
= 1

2ǫij p̂jδn̄p, i = x, y, δsz
p
= 0, (10)

where the last two equalities express spin-momentum
locking in the xy plane. Equations (8)-(10), together
with the definitions of the unprojected Landau param-
eters in Eq. (5)-(7), are the second main result of this
work.

Before deriving the physical properties of the helical
FL from the projected Landau functional (8), we pause
to discuss a number of interesting features of the re-
lationship (9) between projected and unprojected Lan-
dau parameters. The unprojected Landau parameters
f sc,1
l , f sc,2

l , and f ss,4
l do not enter the projected interac-

tion because spin and momentum are perpendicular on
the Fermi surface (p̂ · δsp = 0) due to spin-momentum

locking. The parameter f sc,4
l does not enter either be-

cause it produces a projected interaction that is odd un-
der p ↔ p′, which is inconsistent with particle indis-
tinguishability. The last term on the right-hand side of
Eq. (9) shows that projection to the Fermi surface can
effectively raise or lower the angular momentum of the
unprojected interaction. For example, for l = 1 one has

f̄1 = f cc
1 − f sc,3

1 − 1
4f

ss,5
1

+ 1
8 (f

ss,1
0 − f ss,3

0 + f ss,1
2 + f ss,3

2 ), (11)

that is, an isotropic, s-wave (l = 0) microscopic interac-
tion can produce an anisotropic, p-wave (l = 1) effective
interaction in the projected theory. This can be seen as
the particle-hole counterpart to the effective p-wave in-
teraction in the Bardeen-Cooper-Schrieffer (BCS) chan-
nel produced on the doped surface of a 3D topological
insulator by a microscopic s-wave BCS interaction [21].

As in standard FL theory, many physical properties of
the helical FL can be derived from the projected Landau
functional (8). The simplest property is Luttinger’s theo-
rem [22], i.e., the relation pF =

√
4πn between Fermi mo-

mentum pF and total density n of quasiparticles, which
is also equal to the total density of electrons (defining a
system with pF = 0 as the vacuum). That Luttinger’s
theorem holds in its original form despite the presence of
strong spin-orbit coupling is a consequence of the exis-
tence of a single helical Fermi surface, which is only possi-
ble on the surface of a 3D topological phase. Interactions
in topologically trivial spin-orbit coupled systems such
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as the Rashba 2D electron gas can individually renor-
malize the Fermi momenta of the two spin-split Fermi
surfaces [16]. Other equililibrium properties of the heli-
cal FL can be calculated from the quasiparticle energy
ǫp, defined as the functional derivative of the Landau
functional with respect to the distribution function,

ǫp =
δĒ

δn̄p

= ǫ0
p
+

∞
∑

l=0

∫

đp′f̄l cos lθpp′δn̄p′ . (12)

From Eq. (12) one can follow the standard FL ap-
proach [19] to derive the electronic specific heat coeffi-
cient γ ≡ cv/T and electronic compressibility κ of the
helical FL at zero temperature,

γ = 1
3π

2k2Bρ(ǫF ), κ =
ρ(ǫF )

n2

1

1 + F̄0
, (13)

where we define dimensionless Landau parameters F̄0 ≡
ρ(ǫF )f̄0 and F̄l ≡ 1

2ρ(ǫF )f̄l, l = 1, 2, 3, . . ., with ρ(ǫF ) =
ǫF /2πv

2
F the density of states of the helical FL at the

Fermi energy ǫF = vF pF . The compressibility becomes
negative for F̄0 < −1, signaling an instability towards
phase separation [23]. Unlike in a standard FL, here this
condition can be reached not only for attractive density-
density interactions, but also as a result of spin-charge or
even purely spin-spin interactions, given the relation (9)
between the projected and unprojected Landau parame-
ters.

The renormalized Fermi velocity vF differs in gen-
eral from the Fermi velocity of noninteracting electrons
v0F . This is similar in spirit to the renormalization of
the quasiparticle mass in a standard FL. The deriva-
tion of the latter relies on Galilean invariance, while in
the helical FL, Galilean invariance is broken by spin-
orbit coupling. However, adiabatic continuity still im-
plies that the total flux of quasiparticles is equal to the
total flux of electrons [1]. The latter is calculated from
the quantum-mechanical velocity operator for electrons
ve = v0F (ẑ × σ) which, for momentum-independent mi-
croscopic interactions [24], is the same as in the absence
of interactions [25]: it is a function of the noninteracting
Fermi velocity, rather than the renormalized one. The
total quasiparticle flux is a function of the quasiparticle
velocity vqp = ∇pǫp. Equating the two fluxes yields a
relation between the two Fermi velocities [19],

v0F
vF

= 1 + F̄1, (14)

which is the helical FL analog of the relation m∗

m
=

1 + 1
3F

s
1 between renormalized m∗ and noninteracting

m quasiparticle masses in a standard FL [1].
The spin susceptibility introduces some added sub-

tleties: unlike in a standard FL, it is not, strictly speak-
ing, a Fermi surface property. Indeed, it depends explic-
itly on a high-energy cutoff Λ already in the noninter-
acting limit [26, 27]. In a standard FL, one can always

choose the spin quantization axis to be parallel to the
applied magnetic field B, such that the quasiparticle en-
ergy shift δǫpσ = 1

2gµBBσ due to Zeeman coupling (g is
the g-factor, µB is the Bohr magneton) is diagonal in the
spin basis σ = ±1. The resulting change in occupation
numbers is localized to the Fermi surface in the zero-field
limit, causing the spin susceptibility to be a Fermi sur-
face property. In the helical FL, there is no freedom to
choose the spin quantization axis due to spin-momentum
locking, and the Zeeman coupling contains off-diagonal
terms in the helicity basis. The projected FL theory (8),
which projects out negative helicity states, cannot take
these off-diagonal terms into account and thus should not
be expected to yield exact results for the spin suscepti-
bility. Nevertheless, one can calculate the Fermi surface
contribution to the spin susceptibility using (8) and com-
pare it in the noninteracting limit to an exact calculation
that takes both helicities into account. The spin suscep-
tibility tensor χij is found to be diagonal, with in-plane
χxx = χyy and out-of-plane χzz components given by

χxx = 1
8g

2µ2
Bρ(ǫF )

1

1 + F̄1
, χzz = 0, (15)

in the projected FL theory, and

χxx = 1
8g

2µ2
Bρ(Λ), χzz = 1

4g
2µ2

B[ρ(Λ)− ρ(ǫF )], (16)

for the noninteracting Dirac surface state, including both
helicities [19]. Thus in the noninteracting limit, Eq. (15)
and (16) agree in the formal limit of large Fermi en-
ergy ǫF → Λ. By contrast with the spin susceptibility
of the standard FL which is renormalized by the spin-
antisymmetric l = 0 Landau parameter F a

0 , here it is
renormalized by a l = 1 Landau parameter due to spin-
momentum locking on the Fermi surface.

Pomeranchuk instabilities [28] are instabilities of the
Fermi surface towards spontaneous, static distortions of
its shape. To study such instabilities in the helical FL,
one characterizes distortions of the Fermi surface by an
angle-dependent Fermi momentum, expanded in angular
momentum components,

pF (θ)− pF =

∞
∑

l=−∞
Ale

ilθ, (17)

where A−l = A∗
l because pF (θ) is real. Substituting this

expression into the Landau functional (8), one finds that
the energy δĒ remains positive, and thus the helical FL
stable, if and only if [19]

F̄l > −1, (18)

for all l = 0, 1, 2, . . . This is the same as Pomeranchuk’s
original criterion in 2D, but applied this time to the pro-
jected Landau parameters, which are nontrivial functions
of the unprojected ones. It contains as special cases the
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instability towards phase separation, already seen, as well
as an instability towards in-plane magnetic order [29] for
F̄1 → −1, that is signaled by divergences of the in-plane
spin susceptibility (15) and the renormalized Fermi veloc-
ity (14). The latter divergence also accompanies the l = 1
spin-symmetric Pomeranchuk instability of the standard
FL [30]. The l = 2 instability is towards quadrupolar dis-
tortions of the helical Fermi surface, characterized in the
projected FL theory by a nonzero value of the traceless,
symmetric nematic order parameter Q̄ij =

∫

đp Q̄ij(p)
where Q̄ij(p) = (2p̂ip̂j − δij)δn̄p. This effectively spin-
less order parameter is identical to the one that describes
nematic order in a standard spin-degenerate FL [31]. In
the original unprojected theory however, this translates
into a nonzero value of Qij =

∫

đpQij(p) where

Qij(p) = p̂iδs
j
p
+ p̂jδs

i
p
− δij p̂ · δsp, (19)

is a quadrupolar order parameter involving both spatial
and spin degrees of freedom that was recently discussed
in the context of possible instabilities of surface Majorana
fermions in the topological superfluid 3He-B [32] and 3D
spin-orbit coupled metals [17, 33]. Thus the quadrupo-
lar distortion of a helical Fermi surface is necessarily ac-
companied by a time-reversal invariant form of magnetic
order similar in spirit to spin nematic order [34].

Nonequilibrium properties of the helical FL such as col-
lective modes can also be studied using the projected FL
theory, assuming that the relaxation-time approximation
is valid such that scattering between states of different
helicities can be neglected. In the hydrodynamic regime
ωτ ≪ 1 where τ is the quasiparticle collision time, the
helical FL supports ordinary sound waves (first sound)
with velocity [19]

c1 = vF

√

1
2 (1 + F̄0)(1 + F̄1), (20)

while in the collisionless regime ωτ ≫ 1 a zero sound
mode may exist under certain conditions [25]. If F̄0 > 0
only is nonzero, the zero sound velocity is given in the
limits of strong and weak interactions by [19]

c0 ≈ vF

√

1
2 F̄0, F̄0 → ∞, (21)

c0 ≈ vF
(

1 + 1
2 F̄

2
0

)

, F̄0 → 0. (22)

We conclude by discussing prospects for the experi-
mental determination of the projected Landau parame-
ters F̄l. ARPES can determine pF which, via Luttinger’s
theorem, yields the density n. Using Eq. (13), F̄0 could
then be inferred from measurements of the heat capac-
ity and electronic compressibility of the surface states.
The latter can in principle be determined directly from
the ARPES data or via single electron transistor mi-
croscopy [35]. To determine F̄1, one could perform a
transient spin grating experiment [25] to generate a spin-
density wave with momentum q and transverse ampli-

tude sT
q
. Due to spin-momentum locking, this will in-

duce a density wave at the same momentum with am-
plitude nq. Assuming that Coulomb interactions are
screened, the existence of an undamped sound mode at
frequency ω = csq implies a relation between the two
amplitudes [19],

sT
q

nq

=
1

1 + F̄1

cs
vF
, (23)

where cs is either c1 or c0 depending on whether one
is in the hydrodynamic or collisionless regime. Using
Eq. (20)-(22) one can extract F̄1 from a measurement of
the amplitude ratio sT

q
/nq and previous knowledge of F̄0.
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