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Exotic topologically protected zero modes with parafermionic statistics (also called fractionalized
Majorana modes) have been proposed to emerge in devices fabricated from a fractional quantum
Hall system and a superconductor. The fractionalized statistics of these modes takes them an
important step beyond the simplest non-Abelian anyons, Majorana fermions. Building on recent
advances towards the realization of fractional quantum Hall states of bosonic ultracold atoms, we
propose a realization of parafermions in a system consisting of Bose-Einstein-condensate trenches
within a bosonic fractional quantum Hall state. We show that parafermionic zero modes emerge at
the endpoints of the trenches and give rise to a topologically protected degeneracy. We also discuss
methods for preparing and detecting these modes.
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In recent years the concept of topological order has
revolutionized the way we understand quantum phases of
matter. Topological phases in one- and two-dimensional
systems are particularly interesting as the nontrivial ex-
change statistics of particles allows for exotic states of
matter. For example, Majorana zero modes can emerge
at boundaries of one-dimensional topological supercon-
ductors [1] or in two-dimensional semiconductor het-
erostructures [2–4]; see also suggestive experimental sig-
natures in Refs. [5–10]. These topological modes have
been a subject of intense interest due to their potential
applications in quantum computation, although they do
not support universal quantum computing with braiding
alone [11–16]. In two dimensions, certain fractional quan-
tum Hall (FQH) states have been proposed to manifest
emergent non-Abelian excitations with universal braid-
ing statistics [17–19]. However, an experimental confir-
mation of such emergent non-Abelian anyons has so far
remained elusive [20–22].

Recently, it has been proposed that one can en-
gineer non-Abelian excitations by adding defects in
the form of ferromagnet-superconductor interfaces at
the edges of adjacent Abelian FQH states [23–26].
The domain wall at their interface binds exotic zero
modes with parafermionic commutation relations. These
parafermionic zero modes are associated with a ground-
state degeneracy that is exponential in the number of
domain walls (defects). As with any non-Abelian anyon,
the exchange of the defects binding these parafermionic
operators generates a unitary rotation in the ground-
state subspace. However, the set of operations for quan-
tum computation available through such exchanges is
richer than that available through Majorana exchange
[23]. While the braiding of parafermions is not in it-
self universal for quantum computation, recent proposals
have also used these modes in constructing new 2D topo-

Figure 1: A quasi-one-dimensional finite trench, i.e. a poten-
tial dip, is created by spatially modulating the intensity of
the laser used to create the dipole trapping potential confin-
ing the atoms to the plane (a cut midway along one trench
is shown). Within the trench, the two-dimensional density
of trapped bosons deviates from the FQH filling fraction and
gives rise to a BEC.

logical phases that do support excitations with computa-
tionally universal braid statistics [27]. Parafermions may
also be realized in bilayer quantum hall systems, where
the role of the superconducting- (or BEC-) induced cou-
pling is played by an interlayer tunneling term [28, 29].
For a recent proposal on parafermions, see also Ref. [30].

While existing proposals are based on an experimen-
tally challenging combination of FQH and superconduct-
ing systems of electrons, rapid advances towards creating
a bosonic FQH state open new opportunities to realize
topologically nontrivial states in the context of ultracold
bosonic systems [31–34]. FQH states have been predicted
in ultracold neutral bosons in a rapidly rotating atomic
trap [35–37]. Subsequently, composite fermion theory has
been generalized to bosonic FQH states from the rotating
ultracold gas perspective [38, 39] .

Unlike fermionic systems, where a condensed state re-
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quires pairing of fermions, systems of ultra-cold bosons
form Bose-Einstein condensates (BECs) without any ad-
ditional pairing interaction. Thus, if a FQH state is re-
alized in bosons, adding a Bose condensed state to such
a system can be expected to be simpler than in the cor-
responding fermionic implementation.

In this Letter, we propose to realize a bosonic analog
of a FQH-superconductor system by inserting a trench
containing a BEC in the middle of a bosonic FQH system,
as shown in Fig. 1. Such a trench of BEC can be created
by introducing a potential well that would trap a high
density of bosons as compared to the FQH region outside.
We will show that the introduction of such a BEC trench
induces a novel state in the quantum Hall edge with a
pairing gap similar to the states with superconductors
in contact with the FQH system. Further we will show
that systems containing a pair of such trenches feature a
ground state degeneracy arising from the topology of the
underlying quantum Hall system. We explicitly construct
fractionalized Majorana fermions as localized zero modes
at the endpoints of the trenches.

Model.—Let us consider a bosonic FQH state with a
filling fraction ν = 1/m, where m is an even integer.
While the bulk of the FQH fluid is incompressible, its
boundaries support gapless edge excitations with frac-
tionalized charge, or boson number in this case, and
statistics [40, 41]. The edge modes of a FQH state can
be described by a bosonized field eiϕ(ξ) that carries bo-
son number 1/m and satisfies a nontrivial commutation
relation [42]

eiϕ(ξ)eiϕ(ξ′) = ei
π
m sgn(ξ−ξ′)eiϕ(ξ′)eiϕ(ξ), (1)

where ξ and ξ′ are the coordinates along the boundary.
Equivalently, the chiral field ϕ satisfies the chiral com-
mutation relations. The creation operator for bosons is
given by eimϕ(ξ); note that bosonic operators commute
according to the above algebra. Furthermore, the density
of bosons on the edge is given by ρ(ξ) = ∂ξϕ/2π. The
Hamiltonian H0 = mv

4π

´
Γ
dξ (∂ξϕ)2, along with the chiral

commutation [ϕ(ξ), ∂ξ′ϕ(ξ′)] = 2πi
m δ(ξ − ξ′) describes a

free chiral edge mode propagating at velocity v along the
boundary Γ of the FQH state.

As shown in Fig. 1, we consider a BEC trench inside a
bosonic FQH state that can be introduced by varying the
potential. The topological phase realized by this FQH
system will be characterized by a topological degeneracy.
To create a Hilbert space that allows us to access this
degeneracy, we will need to consider a system containing
two such trenches in the FQH system [two copies of the
trench in Fig. 1]. The total Hamiltonian describing the
boundaries of the FQH state at the edges of the two BEC
trenches is given by

H = H1(ϕ1, Q1) +H2(ϕ2, Q2) (2)

with Q1 +Q2 = 0 mod 1,

where the subscripts denote the trenches, and Qi is the
fractional number (“charge”) of quasiparticles modulo 1
on the edge of the ith trench. While each edge can have a
fractional charge, the total number of quasiparticles must
add up to an integer bosonic charge, i.e. Q1+Q2 = 0 mod
1. We show that, under certain conditions, the Hilbert
space of this system manifests degenerate ground states
characterized by parafermionic zero modes at the ends of
the BEC trenches. The defects at each end of the trench
thus act as non-Abelian anyons. This is the central result
of this Letter. We also analyze the robustness of this
degeneracy to realistic experimental imperfections.
Single-trench Hamiltonian.—For simplicity, we first fo-

cus on a single edge, with the Hamiltonian H1(ϕ1, Q1),
without the constraint in Eq. (2), but will impose it later
in our discussion of the degeneracy of the two-trench sys-
tem. For now, we also drop the subscript 1 for notational
simplicity. The tunneling between the BEC field Ψ and
the edge states on the trench is described by

Htun = −∆

ˆ
Γ

dξ eimϕ(ξ)Ψ(ξ) + h.c. (3)

Note that only a boson, i.e. m quasiparticles bound to-
gether, can directly tunnel to the BEC. Opening a topo-
logical gap on the trench requires a coupling between
the counter-propagating states on the two edges of the
trench. The simple single boson tunneling term obtained
by approximating Ψ(x) ≈ Ψ0 does not couple the edges
and leaves a state topologically equivalent to the gapless
chiral edge on the trench. To solve this problem, we con-
sider fluctuations in the BEC field as Ψ(x) = Ψ0 +δΨ(x),
where δΨ(x) is the the bosonic fluctuation field in a three
dimensional BEC. δΨ(x) can be integrated out to obtain
an effective self-energy for the edge induced by the BEC,
Σ = Σ(1) + Σ(2), where Σ(1) = −Ψ0∆

´
Γ
dξ eimϕ(ξ) + h.c.

is linear in ∆, while Σ(2) couples pairs of points directly
across the trench, separated by a distance comparable to
the trench’s width W , as shown in Fig. 2. It is convenient
to define the coordinate x ∈ [0, L] along the trench of
length L, together with the left- and right-moving fields
ϕL(x) = ϕ(x) and ϕR(x) = ϕ(2L−x) propagating along
the top and bottom edge, respectively. Σ(2) induces an
interaction between the opposite edges of the BEC trench
both via pairing as well as backscattering of bosons. On
the other hand, we can use the freedom in tuning the
trap potential to change the chemical potential in the
BEC, which, in turn, changes the momentum of quasi-
particles on the edge. A uniform change of density by ρ0

implies ϕ(ξ) → ϕ(ξ) + 2πρ0ξ, and thus gives rise to an
oscillating phase in Eq. (3). This phase would ensure mo-
mentum conservation [43], as the result of which Σ(1) is
suppressed, and only those terms that conserve the total
momentum contribute significantly to Σ(2). Physically
the only terms that satisfy these constraints are scatter-
ing terms on the same edge or pairing between opposite
edges. The former simply renormalizes the velocity, while
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Figure 2: The top-view of a BEC trench within a FQH state.
The trapping potential is engineered such that the boson den-
sity is uniform across the shaded area but vanishes in a small
region of size l near the endpoints. Quantum fluctuations of
the BEC couple opposite edges in the shaded region.

the latter is analogous to superconducting pairing. Tak-
ing the above constraints into account, the dominant,
and local, contribution to the effective interaction is

Veff = −λ
ˆ L−l

l

dx cos(2mφ), (4)

where we have defined the (non-chiral) fields φ(x)
and θ(x) by ϕL/R(x) = φ(x) ∓ θ(x), and the cou-
pling coefficient λ ∝ ∆2. The new non-chiral
fields are self-commuting at all points, but satisfy
[φ(x), θ(x′)] = i(π/m)Θ(x− x′). For details of the deriva-
tion of the effective Hamiltonian, see the Supplemental
Material [44].

The term cos(2mφ) represents the effective pairing be-
tween the edges and is reminiscent of the sine-Gordon
model [45]. The resulting Hamiltonian that describes the
BEC trench (Fig. 2) can be written as

Heff ≈
mv

2π

ˆ L

0

dx
[
(∂xφ)2 + (∂xθ)

2
]
− λ
ˆ L−l

l

dx cos(2mφ),

(5)
where the continuity of ∂xϕ(x) near x ∼ 0, L transforms
into the boundary condition ∂xφ(x = 0, L) = 0. We
note that, in addition, we are required to preserve the
boundary conditions for θ at the endpoints: θ(x = L) = 0
follows from the definition, while θ(x = 0) = πN/m,
where N is the total number of quasiparticles. The latter
is due to the fact that the total density of bosons on
both edges is ρ = −∂xθ/π. However, similar to other
restrictions on the Hilbert space, we will restore these
boundary conditions at the end of the calculation. At
large λ > 0, the sine-Gordon model [Eq. (5)] supports
several ground states |p〉 characterized by the expectation
values

〈p|eiφ(x)|p〉 ≈ eiπp/m, p = 0, 1, · · · , 2m− 1, (6)

for x away from the edges and in the limit of large L [45].
To restore the appropriate boundary conditions for

θ(x = 0, L), we notice that θ(x = L) commutes with φ(x)
and Heff , hence it can be set to any value [θ(x = L) = 0
in our case] without consequence for the single trench.
On the other hand, θ(x = 0) = πN/m obeys a non-trivial

commutation relation with φ(x) such that [N,φ] = −i;
however, R = ei

π
mN commutes with Heff . The oper-

ator R, despite being a symmetry of the Hamiltonian,
transforms φ(x) in a non-trivial way as

Rφ(x)R† = φ(x) +
π

m
. (7)

It then follows that, including the boundary conditions,
different values of φ in Eq. (6) indeed correspond to the
same energy. Exploiting the above symmetry, we can
describe the ground states in a basis that also makes the
operator R diagonal as

|n〉 =

2m−1∑
p=0

eiπnp/m |p〉 , (8)

which satisfy R|n〉 = eiπn/m|n〉. Physically, n corre-
sponds to the number of quasiparticles modulo pairs of
bosons on the edge of a given trench. In our model thus
far, this is a well-defined quantum number since the co-
sine term in Eq. (5) transfers only pairs of bosons from
the condensate. Note that N takes 2m distinct eigenval-
ues. This allows us to associate a degeneracy of

√
2m

with each of the endpoints of the BEC trench (the ‘de-
fects’) in the limit of a large number of trenches where
restrictions on the Hilbert space may be safely ignored.
We will discuss Hilbert space constraints for a small num-
ber of trenches in the next section. Finally we remark
that the fractional part of the boson number on a trench,
which is invariant under the addition of single bosons, is
Q = N/m mod 1, while Qb ≡ [N/m−Q] ∈ {0, 1} defines
the boson parity. The

√
2m degeneracy thus also requires

protection by a Z2 symmetry due to boson parity.
Degeneracy.—So far we have focused on the spectrum

of a single trench without the physical constraints of
the Hilbert space. With a finite number of trenches,
the total fractional charge Q should be 0 mod 1 [51].
Considering the double trench model of Eq. (2), the
fractional boson numbers on the two trenches satisfy
Q1 = −Q2 = 0, 1/m, · · · , 1−1/m, while their boson par-
ities Qb,1 = 0, 1 and Qb,2 = 0, 1 are unconstrained, which
yields a total degeneracy of D = 4m for two trenches.
More generally, a system of k trenches with boson-parity
conservation intact has the degeneracy

D = 2(2m)k−1. (9)

We shall discuss the (topological) robustness of this
degeneracy, which partially survives the Z2 symmetry
breaking, after we explicitly construct operators that
span the 4m degeneracy present in the two trench case.
Parafermion operators.—We now construct the oper-

ators spanning the above two-trench degeneracy. As re-
marked earlier, this degeneracy is spanned by the ex-
change of quasiparticles between the endpoints of the
trenches. Let U†l (U†r ) be the exchange operator between
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the left (right) endpoints of the two trenches. They can
be expressed as

U†l,r ≡ T
†
l,rBl,r, (10)

where T † and B† represent quasiparticle vertex operators
acting on the top trench and bottom trench, respectively,
and projected onto the ground-state sector. For exam-
ple, T †l,r = eiϕ1(x=0,L) adds a quasiparticle on one of the
two ends of the first trench with the projection onto the
ground state implicit. The operator B on the second
trench can be defined similarly by ϕ1 → ϕ2; however,
we must insure that the exchange of quasiparticles be-
tween the two trenches respects the exchange statistics.
This can be done consistently by including a Klein factor
as B†l,r = eiπN1/meiϕ2(x=0,L), where N1 is the number of
quasiparticles on the first trench. With this construction,
we now focus on the operator T defined above. Note that
the chiral field at the ends is given by ϕ1 = φ1 − θ1. As
we discussed earlier, θ1(L) = 0 and θ1(0) = πNθ,1/m
mod 2π with Nθ,1 ≡ m(Qb,1 + Q1) the total number of
quasiparticles modulo 2m on the first trench. Since we
are interested in the ground state sector, the field φ is
roughly assumed to be pinned according to Eq. (6) over
the entire edge as φ1(0) ≈ φ1(L) ≈ 2πNφ,1/m with inte-
ger Nφ,1. We find

T †l = ei
π
m (Nφ,1−Nθ,1), T †r = ei

π
mNφ,1 , (11)

which satisfy the algebra

(T †l,r)
2m = 1, T †l T

†
r = e−i

π
mT †r T

†
l . (12)

These relations describe parafermions, a generalization
of the fermionic algebra [23–26, 46], see also Ref. [47].

The operators Bl,r can be defined similar to Eq. (11)
by including the Klein factor exp(iπNθ,1/m) explained
above, and with Nθ,1 → Nθ,2 = m(−Q1 + Qb,1) and
Nφ,1 → Nφ,2. The parafermionic algebra implies that
(U†)2m = 1, which yields 2m degenerate gNuround states
in a sector with a fixed total parity [the operator U does
not change the total parity according to Eq. (10)]. With
the two-fold degeneracy due to the total parity, one re-
covers the full 4m degeneracy of the system.

Robustness.—Heretofore, we have focused on the
Hamiltonian in Eq. (5). In principle, however, a sin-
gle boson can tunnel to or from the BEC, which might
arise from terms of the type V = cos[mφ(x = 0, L)] near
the endpoints of the trench. In fact, introducing the per-
turbation V within first order degenerate perturbation
theory reduces the 4m fold degeneracy to D′ = m/2; see
the Supplemental Material [44] for details. While such
a term clearly breaks the boson parity symmetry (hence
(Qb,1, Qb,2) are no longer good quantum numbers), it also
breaks a two-fold degeneracy of the fractional number of
quasiparticles Q1. The remaining m/2-fold degeneracy is

topologically protected, and we find in general that the
degeneracy for k trenches is given by

D′ = (m/2)k−1. (13)

This gives a quantum dimension of
√
m/2 for the de-

fects ending the BEC trenches. However, if the vacuum
regions (Fig. 2) are sufficiently large, single-boson tun-
neling is suppressed, and one recovers the degeneracy in
Eq. (9).

We also briefly remark that the long-range fluctuations
of the BEC can be considered effectively as long-range
tunneling, and can provide another mechanism to break
the boson-parity symmetry, while the quantum dimen-
sion in Eq. (13) will not be affected.

Preparation and detection.—There is some evidence
that a ν = 1/2 fractional Chern insulator has a continu-
ous transition to a BEC, which allows for quasi-adiabatic
preparation of the former [48]. A similar procedure may
exist for FQH states. The parafermions in the FQH state
can be prepared by starting with a small island which can
be grown to a trench in linear time by modulating the
laser beams. Furthermore, Bragg spectroscopy can pro-
vide direct information about the topological phase of
the system. For example, one should observe a zero bias
peak at the endpoints of the trench [49]. They can also
be probed using braiding, which corresponds to the topo-
logically protected manipulation of the underlying quan-
tum information and which requires dynamically chang-
ing the geometry of the system, bringing different sets
of parafermionic edge modes in close proximity to each
other [23, 24]. Such dynamical changes can easily be
achieved by dynamically changing the laser beam used
to create the BEC trenches.

It is worth pointing out that a theoretically simpler but
experimentally more challenging approach would proceed
by analogy with Ref. [50]: A BEC of diatomic molecules
can be coherently dissociated into pairs of atoms, which
readily gives the effective Hamiltonian in Eq. (4). We
also mention that ultracold fermionic systems too can be
utilized to create parafermionic zero modes; however, the
pairing term has to be generated from a BEC of molecules
of fermionic atoms, or some other paired state, which
is, nevertheless, more complicated experimentally than
a BEC trench proposed here. Furthermore, ultracold
bosons are more common experimentally than ultracold
fermions in part because they are easier to cool. Finally,
for a fermionic system, one can use the solid-state pro-
posals almost directly, while our bosonic model gives rise
to qualitatively different results.

Conclusion.—In this work, we have considered a BEC
trench in a FQH liquid, and showed that, in a certain
regime, the combined system is in a topological phase,
which is identified by the zero mode operators at the end-
points of the trench. These zero modes are shown to be
parafermions, a generalization of the usual fermionic or
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bosonic algebra. We have also derived the topological de-
generacy of the parafermionic modes, and examined their
robustness against local perturbations. While we have
focused on bosonic FQH states in the series ν = 1/m,
with m an even integer, our results may be extended in
a straightforward manner to other bosonic and fermionic
quantum Hall states in an ultracold atomic setting [52].
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