
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Synchronization as Aggregation: Cluster Kinetics of Pulse-
Coupled Oscillators

Kevin P. O’Keeffe, P. L. Krapivsky, and Steven H. Strogatz
Phys. Rev. Lett. 115, 064101 — Published  6 August 2015

DOI: 10.1103/PhysRevLett.115.064101

http://dx.doi.org/10.1103/PhysRevLett.115.064101


Synchronization as Aggregation: Cluster Kinetics of Pulse-Coupled Oscillators

Kevin P. O’Keeffe,1 Pavel L. Krapivsky,2 and Steven H. Strogatz3

1Department of Physics, Cornell University, Ithaca, NY 14853, USA
2Center for BioDynamics, Center for Polymer Studies,

and Department of Physics, Boston University, Boston, MA 02215
3Department of Mathematics, Cornell University, Ithaca, NY 14853, USA

(ΩDated: July 6, 2015)

We consider models of identical pulse-coupled oscillators with global interactions. Previous work
showed that under certain conditions such systems always end up in sync, but did not quantify how
small clusters of synchronized oscillators progressively coalesce into larger ones. Using tools from
the study of aggregation phenomena, we obtain exact results for the time-dependent distribution of
cluster sizes as the system evolves from disorder to synchrony.
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In one of the first experiments on firefly synchroniza-
tion, the biologists John and Elisabeth Buck captured
hundreds of male fireflies along a tidal river near Bangkok
and then released them at night, fifty at a time, in their
darkened hotel room [1]. They observed that “centers of
synchrony began to build up slowly among the fireflies
on the wall. In one area we would notice that a pair had
begun to pulse in unison; in another part of the room a
group of three would be flashing together, and so on.”
Synchronized groups continued to emerge and grow, un-
til as many as a dozen fireflies were blinking on and off in
concert. The Bucks realized that the fireflies were phase
shifting each other with their flashes, driving themselves
into sync.

Here we study stylized models of oscillators akin to
the fireflies, in which synchrony builds up stepwise, in
expanding clusters. By borrowing techniques used to an-
alyze aggregation phenomena in polymer physics, mate-
rials science, and related subjects [2, 3], we give the first
analytical description of how these synchronized clusters
emerge, coalesce, and grow. We hasten to add, however,
that the models we discuss are not even remotely real-
istic descriptions of fireflies; they are merely intended as
tractable first steps toward understanding how clusters
evolve en route to synchrony.

Our work is part of a broader interdisciplinary ef-
fort [4, 5]. Oscillators coupled by sudden pulses have
been used to model sensor networks [6–10], earthquakes
[11, 12], economic booms and busts [13], firing neurons
[14, 15], and cardiac pacemaker cells [16]. Diverse forms
of collective behavior can occur in these pulse-coupled
systems, depending on how the oscillators are connected
in space. Systems with local coupling often display waves
[17, 18] or self-organized criticality [11, 19, 20], with pos-
sible relevance to neural computation [15] and epilepsy
[21]. In contrast, systems with global coupling, where ev-
ery oscillator interacts equally with every other, tend to
fall into perfect synchrony. Rigorous convergence results
have been proven for this case [20, 22–25]. But the tech-
niques used previously have not revealed much about the

transient dynamics leading up to synchrony—the open-
ing and middle game, as opposed to the end game. Ag-
gregation theory offers a new set of tools to explore this
prelude to synchrony.

Exact results for the transient dynamics can be ob-
tained in at least two cases. In the Supplemental Mate-
rial [26], we apply aggregation theory to the deterministic
Peskin model [16], assuming the oscillators rise linearly
to threshold and fire pulses of size 1/N , where N � 1 is
the number of oscillators. A simplified stochastic version
of this model yields similar results, but because it illus-
trates the main ideas more clearly we present it here in
the main text. This toy model, which we call scrambler
oscillators, consists of N identical integrate-and-fire os-
cillators coupled all to all. Each oscillator has a voltage-
like state variable x that increases linearly according to
ẋ = 1, rising from a baseline value of 0 to a threshold
value of 1. Whenever any oscillator reaches threshold, it
fires and does three things. (i) It kicks every oscillator
(and every synchronous cluster of oscillators) to a new
random voltage, independently and uniformly—in this
sense, it scrambles the other oscillators. However, no
scrambling occurs within a cluster; all oscillators at the
same voltage get kicked to the same new voltage. Thus,
clusters never desynchronize; once formed they are pre-
served by the scrambling procedure. (ii) The firing os-
cillator then “absorbs” any scrambled oscillators that lie
within a distance 1/N of threshold, by bringing them
to threshold and thereby synchronizing with them. To
avoid the complications that would be caused by chain
reactions of firings, we assume that the oscillators being
brought to threshold do not get to fire until the next time
they reach threshold. (iii) The oscillator that fired resets
to x = 0 along with the oscillators it absorbed.

If a cluster of j oscillators does the firing, the same
rules apply, except that now any oscillators within a dis-
tance j/N of threshold get absorbed. The assumed pro-
portionality to j is natural, if each member of the cluster
contributes to the pulse strength. We study other plau-
sible coupling rules in [26].
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The motivation for this scrambler model is that it
leads to the simplest possible mean-field approximation.
In the infinite-N limit, we would like clusters of every size
to be uniformly distributed in voltage at all times. This
convenient property would greatly ease the derivation of
the rate equations for the cluster kinetics. As we will see
below, the predictions that follow from this approxima-
tion agree reasonably well with simulations. (For finite-
N , these assumptions break down at large times and for
large clusters, limitations that we analyze in [26].)

Assume the initial voltages xi, for i = 1, . . . , N , are
independent and uniformly distributed. At first, nothing
interesting happens. The oscillators increase their volt-
ages without interacting. But then one oscillator reaches
threshold and fires. The remaining oscillators get scram-
bled, and perhaps some get absorbed. Then another os-
cillator fires, and so on. After a while, the system has
formed clusters of various sizes.

Let Nj(t) denote the number of clusters of size j at
time t. Thus there are N1(t) singleton oscillators, N2(t)
pairs of synchronized oscillators, N3(t) triplets, and so
on. The Nj are correlated random quantities. They are
correlated because oscillators belonging to clusters of one
size are unavailable to clusters of another size, and they
are random because of the randomness in the initial con-
ditions and the scrambling procedure. It does not seem
feasible to understand the time-evolution of the Nj unless
they are so large that their fluctuations from one random
realization to another are negligible.

So assume from now on that Nj � 1 for all j and
replace these random quantities by their ensemble av-
erages. Let cj = N−1〈Nj〉 denote the average clus-
ter densities. One hopes that relative fluctuations are
small; more precisely, N−1Nj = cj + O(N−1/2). An
even stronger assumption is that the densities of dif-
ferent sub-populations are asymptotically uncorrelated:
N−2NiNj = cicj +O(N−1/2).

These cj allow us to define a natural disorder param-
eter, given by the total density c(t) =

∑
j cj(t). It mea-

sures the extent of the system’s fragmentation. To see
this, note that at t = 0 each oscillator is alone; only clus-
ters of size 1 exist. Accordingly c1(0) = 1 and all other
cj(0) = 0 for j > 1. Hence c(0) = 1, correctly indicat-
ing that the system starts out maximally fragmented. At
the opposite extreme, as t→∞ only one giant cluster of
synchronized oscillators exists. The system is then mini-
mally fragmented: c(t) = 1/N → 0 as N →∞.

To derive a rate equation for the decline of c(t), let Ri

be the rate at which clusters of size i fire, for i = 1, . . . , N ,
and let Li be the number of clusters lost to absorption
in each such firing. Then ċ = −

∑
iRiLi.

To find Li, recall that when a cluster of size i fires, all
the other clusters get assigned a new voltage uniformly at
random. Moreover, any clusters assigned to the interval
[1−i/N, 1) get brought to threshold and absorbed. Since
the voltages of these other clusters are uniformly dis-

tributed on [0, 1], a fraction i/N of them will be absorbed.
There are

∑
j Nj clusters in total. Hence the number ab-

sorbed is Li = (i/N)
∑

j Nj = i
∑
cj = ic.

The rate Ri takes more work to calculate. Since some
clusters get absorbed, not every cluster gets the chance to
fire. We must account for this depletion when calculating
Ri. First consider the background rate of firing of clusters
of size i in the absence of absorptions. In other words,
pretend for a moment that when an i-cluster fires, it sim-
ply scrambles every other cluster and restarts its own cy-
cle without absorbing anyone. Call this background rate
R0

i . Since all oscillators move with velocity vi = ẋi = 1,
and since the cluster density is ci, the corresponding
background rate of firing is R0

i = civi = ci. Next, to find
the actualRi, we must subtract fromR0

i the rate at which
clusters of size i are being absorbed and hence deprived
of their chance at firing. Call this absorption rate Ra

i .
Clusters of size i are absorbed when clusters of size j fire,
for j = 1, . . . , N , taking a fraction j/N of the uniformly
distributed i-clusters along with them. Since there are
Ni clusters of size i and the j-clusters fire at rate Rj , the
total rate at which i-clusters are being absorbed is given
by Ra

i =
∑

j(j/N)NiRj =
∑

j jciRj = ci
∑
jRj .

Putting all this together gives Ri = R0
i − Ra

i =
ci − ci

∑
j jRj = ci(1 −

∑
j jRj). Let β = 1 −

∑
j jRj .

Note that β is the same for all i, which enables it to be
determined self-consistently, as follows. From Ri = βci
we obtain β = 1 −

∑
j jRj = 1 −

∑
j(βcj). Now invoke

the identity
∑

j jcj = j(Nj/N) = 1, which expresses con-
servation of oscillators. Solving for β then gives β = 1/2
and therefore Ri = ci/2.

Next, plug the expressions derived for Ri and Li into
the rate equation ċ = −

∑
iRiLi. The result is ċ =

−
∑

i(ci/2)(ic) = −(c/2)
∑

i ici = −c/2. Recalling that
c(0) = 1, we conclude that

c(t) = exp(−t/2). (1)

Figure 1 shows this result matches simulations.

FIG. 1: Theoretical and simulated c(t) and c1(t). Solid lines
show theoretical curves obtained analytically (see text). Data
points show simulation results for N = 104 oscillators.
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How do the individual cluster densities ci behave? To
derive their rate equations, note that since the voltage
space is the interval [0, 1], a segment of length N−1 con-
tains on average Nc×N−1 = c clusters. In fact, the prob-
ability that it contains n clusters (of any sizes) is given
by the Poisson distribution: Πn = cne−c/n!. This is the
mathematical expression of the assumption that clusters
are distributed randomly without correlations.

With this in mind, let us solve for c1(t), the density of
singletons. It is the easiest cj(t) to analyze, since it can
only decrease. Two mechanisms decrease c1(t): (i) The
loss of a firing singleton when it absorbs a cluster of any
size, and (ii) the loss of p > 1 absorbed singletons, when
a cluster of any size fires.

Consider mechanism (i). Since Ri = ci/2 as shown
above, singletons fire at a rate R1 = c1/2. When
they fire, they absorb any cluster lying in the volt-
age segment [1 − 1/N, 1). The probability that this
segment contains one or more clusters is, according
to the Poisson distribution, 1 − e−c. In this case,
the firing singleton is lost by its absorption of a clus-
ter, thus decreasing N1 by 1. Otherwise N1 is un-
changed. Hence singletons are lost by mechanism (i) at
an expected rate (c1/2)

[
1× (1− e−c(t)) + 0× e−c(t)

]
=

(c1/2)
[
1− e−c(t)

]
. Note: we only account for the loss

of the firing singleton here; any singletons it absorbs are
accounted for in the following mechanism (ii).

Suppose p singletons lie in the interval [1 − j/N, 1)
when a cluster of size j fires, for j = 1, . . . , N . This
event happens with probability e−jc1(jc1)p/p!, and when
it does, it consumes p singletons. (If a singleton did the
firing, the loss would be p + 1. However the loss of the
firing singleton was already counted in mechanism (i).
So the consumption factor of p for each firing j-cluster is
valid even for j = 1.) As before, j-clusters fire at a rate
Rj = cj/2. Hence singletons are lost by mechanism (ii)
at a rate ∑

j≥1

cj
2
×
∑
p≥1

p
(jc1)pe−jc1

p!
= c1/2. (2)

Summing the loss rates from (i) and (ii) gives

dc1
dt

= −c1
2

(2− e−c(t)). (3)

This equation has a closed-form solution in terms of ex-
ponential integrals:

c1(t) = exp(−t+ Ei(−1)− Ei(−e−t/2)), (4)

where we have used the initial condition c1(0) = 1. Fig-
ure 1 shows good agreement between the theoretical and
numerical c1(t).

For i > 1, the rate equation for ci includes gain terms
as well as loss terms. Clusters of size i > 1 can be created
when two or more smaller clusters coalesce, or destroyed

when they themselves coalesce with at least one other
cluster. The loss term is a straightforward generalization
of that for c1, and is given by (ci/2)

[
2− e−ic(t)

]
.

To find the gain term, imagine that a cluster of size k
fires. The segment [1 − k/N, 1) may contain a1 clusters
of size 1, a2 clusters of size 2, etc. This event happens

with probability (kc1)
a1

a1!
e−kc1 × (kc2)

a2

a2!
e−kc2 × . . . (where

we are using the assumption that clusters of different
sizes are independent as well as Poisson distributed). If
the segment contains a combination of clusters such that
k + a1 + 2a2 + 3a3 + · · · = i, then a cluster of size i will
form. We sum over all such combinations for a cluster of
size k firing, and then sum over all k, to get the rate at
which clusters of size i are created:

i−1∑
k=1

ck
2
e−kc

∑
a1+2a2+···=i−k

∏
p≥1

(kcp)ap

ap!

 . (5)

Combining the loss and gain terms, and transferring
cie

−ic into the gain term, we finally obtain

ċi = −ci +

i∑
k=1

ck
2
e−kc

∑
∑

pap=i−k

∏
p≥1

(kcp)ap

ap!

 . (6)

We see from the sum that the equations (6) are recursive.
They can be solved one by one, though not analytically,
so we resort to numerical integration. Figure 2 shows
that the theoretical and simulated ci agree.

FIG. 2: Theoretical and simulated cluster densities c2(t)
through c5(t). Solid lines show theoretical predictions com-
puted from numerical integration of Eq. (6). Data points show
simulation results for N = 5 × 104 oscillators.

Although we cannot find all the ci(t) explicitly, we can
get their moments Mn(t) =

∑
j j

ncj(t) through the use
of a generating function. We already know two moments:
M0(t) = c(t), given by Eq. (1), and M1 = 1. A few of
the higher moments are

M2(t) = e3t/2

M3(t) = 7e7t/2 − 6e3t

M4(t) =
448

5
e5t − 128e9t/2 +

217

5
e15t/4 − 4e27t/8.

(7)
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These and further results are discussed in [26].
We also studied two modifications of the scrambler

model. For example, suppose that when a cluster of size
j fires, it absorbs all oscillators within a distance kj/N
of threshold, where k > 0 is a tunable coupling strength.
Or suppose that the pulse strength is k/N , independent
of the size j of the firing cluster. We discuss both cases in
[26]. In the latter case the disorder parameter c(t) decays
algebraically rather than exponentially. This makes sense
physically: by assuming that larger clusters no longer
fire larger pulses proportional to their size, we cut the
positive feedback loop underlying the exponential growth
of synchrony in the original scrambler model.

The stochastic scrambler model approximates the de-
terministic models studied by Peskin [16] and Mirollo and
Strogatz [22]. In those models, when a cluster of size j
fires it adds a voltage pulse jε to every other oscillator,
or pulls it up to threshold, whichever is less. For the case
where ε = 1/N and the charging curve is linear, we show
in [26] that these deterministic systems can also be an-
alyzed by the methods above. The main new feature is
that c(t) and the cluster densities ci(t) become piecewise
linear. But their overall shapes still resemble those seen
in the scrambler model.

Intuitively, the piecewise linearity in the deterministic
case arises because the speed of each oscillator, and the
effect of a pulse on each oscillator, is the same. Hence the
oscillators, or clusters of oscillators, maintain their initial
ordering; they all march forward through [0, 1] in a line
with no passing. This property then implies, in a mean-
field sense discussed in [26], that the oscillators condense
into clusters whose size doubles periodically. At the end
of the first period, all oscillators synchronize into pairs
spaced equally apart. At the end of the second period,
those pairs merge into clusters of size 4, and so on. More-
over, the clusters begin each period evenly spaced from
each other (again, in a mean-field sense where fluctua-
tions are neglected), which yields the piecewise constant
firing rate mentioned above.

One limitation of our analysis, for both the scrambler
and deterministic models, is that each oscillator obeys
ẋi = 1 between firings. Such linear sawtooth waveforms
are reasonable for the oscillators used in sensor networks
[8], but not for neurons or cardiac pacemaker cells. In [26]
we show that our results for the deterministic model are
robust to the addition of small concavity in the charg-
ing curve. But large concavity introduces new effects,
not yet understood theoretically. The analysis becomes
more difficult because clusters are no longer uniformly
distributed as we have assumed throughout.

There are many avenues to explore in future work. It
would be interesting to study cluster kinetics in oscillator
systems with local coupling, network structure, hetero-
geneity, delays, and other realistic features. Several of
these features would break clusters apart, and so would
require including fragmentation processes in the analysis.

By incorporating suitable new loss and gain terms in the
rate equations, one could perhaps derive useful estimates
for synchronization speeds in more complex but random
networks where synchronization is guaranteed but speed
estimates are lacking [27].

Another possible application concerns the detection
of network topology. Arenas et al. showed that in the
Kuramoto model, the time course of cluster formation
en route to synchronization can be used to shed light on
a network’s topology [28] and community structure [29].
While the mean-field approach used above is suitable for
homogenous topologies, extensions of our approach us-
ing degree distributions might prove useful in probing a
network’s hidden structure.

[1] J. Buck and E. Buck, Science 159, 1319 (1968).
[2] F. Leyvraz, Physics Reports 383, 95 (2003).
[3] P. L. Krapivsky, S. Redner, and E. Ben-Naim, A Kinetic

View of Statistical Physics (Cambridge University Press,
Cambridge, UK, 2010).

[4] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchro-
nization (Cambridge University Press, Cambridge, UK,
2003).

[5] S. Strogatz, Sync (Hyperion, New York, 2003).
[6] Y.-W. Hong and A. Scaglione, in 2003 IEEE Conference

on Ultra Wideband Systems and Technologies (IEEE,
2003), pp. 190–194.

[7] X. Y. Wang and A. B. Apsel, in 50th Midwest Symposium
on Circuits and Systems, 2007 (IEEE, 2007), pp. 1524–
1527.

[8] G. Werner-Allen, G. Tewari, A. Patel, M. Welsh, and
R. Nagpal, in Proceedings of the 3rd International Con-
ference on Embedded Networked Sensor Systems (ACM,
2005), pp. 142–153.

[9] J. Nishimura and E. J. Friedman, Phys. Rev. Lett. 106,
194101 (2011).

[10] J. Nishimura and E. J. Friedman, Phys. Rev. E 86,
025201 (2012).

[11] A. V. M. Herz and J. J. Hopfield, Phys. Rev. Lett. 75,
1222 (1995).

[12] S. Bottani and B. Delamotte, Physica D 103, 430 (1997).
[13] S. Gualdi, J.-P. Bouchaud, G. Cencetti, M. Tarzia, and

F. Zamponi, ArXiv e-prints (2014), 1409.3296.
[14] C. Kirst, T. Geisel, and M. Timme, Phys. Rev. Lett. 102,

068101 (2009).
[15] J. J. Hopfield and A. V. M. Herz, Proceedings of the

National Academy of Sciences 92, 6655 (1995).
[16] C. S. Peskin, Mathematical Aspects of Heart Physiology

(Courant Institute of Mathematical Sciences, New York,
1975), pp. 268–278.

[17] P. C. Bressloff, S. Coombes, and B. de Souza, Phys. Rev.
Lett. 79, 2791 (1997).

[18] P. C. Bressloff and S. Coombes, Phys. Rev. Lett. 80, 4815
(1998).
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