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Many physical implementations of qubits—including ion traps, optical lattices and linear optics—
suffer from loss. A nonzero probability of irretrievably losing a qubit can be a substantial obstacle
to fault-tolerant methods of processing quantum information, requiring new techniques to safeguard
against loss that introduce an additional overhead that depends upon the loss rate. Here we present
a scalable and platform-independent protocol for estimating the average loss rate (averaged over
all input states) resulting from an arbitrary Markovian noise process, as well as an independent
estimate of detector efficiency. Moreover, we show that our protocol gives an additional constraint on
estimated parameters from randomized benchmarking that improves the reliability of the estimated
error rate and provides a new indicator for non-Markovian signatures in the experimental data. We
also derive a bound for the state-dependent loss rate in terms of the average loss rate.
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In order to build practical devices for processing and
transmitting quantum information, the rate of decoher-
ence and other errors must be below certain fault-tolerant
thresholds. In particular, many experimental implemen-
tations of qubits—such as ion traps [1, 2], optical lat-
tices [3] and linear optics [4]—suffer from irretrievable
loss, that is, there is a nonzero probability of the qubit
vanishing (as opposed to leaking to other energy lev-
els). Such loss of normalization can be a substantial
obstacle to many quantum information protocols, requir-
ing different error-correction techniques to achieve fault-
tolerance [4–6]. For example, the surface code may not be
used directly if there is any probability of losing a qubit,
while for the topological cluster states, loss rates of less
than 1% are required to avoid impractical overheads [6].

However, there are two substantial challenges in char-
acterizing loss. Firstly, the loss rate may depend on the
state of the qubit, such as when a qubit is encoded in a
superposition of vacuum and single-photon states. Sec-
ondly, the loss due to imperfect operations has to be
distinguished from the inefficiency of the detector [7].
Quantum process tomography [8, 9] could be used to
characterize loss, however, it is inefficient in the number
of qubits and is sensitive to state preparation and mea-
surement (SPAM) errors [10] and so cannot distinguish
between loss due to imperfect operations and inefficient
detectors.

In this Letter, we present a robust and efficient pro-
tocol that characterizes the loss rate due to imperfect
operations averaged over input states. Our protocol is
platform-independent, simple to implement and analyze
and only assumes that the noise is Markovian. We begin
by defining survival rates and then present our protocol
and derive the associated analytical decay curve under
the assumption of Markovian noise. We then prove that
the average loss rate estimated via our protocol provides

a practical bound on the loss rate for any state. Since
our protocol is robust to SPAM, the choice of state and
measurement in our protocol is unconstrained. However,
we discuss two particularly suitable choices. The first of
these maximizes the signal and the second allows one of
the parameters in randomized benchmarking [11] to be
independently estimated and leads to a new test for non-
Markovian effects. The second choice also allows for an
estimate of the unitarity metric introduced in Ref. [12]
with no additional experimental overhead. In addition,
we demonstrate that our protocol produces reliable esti-
mates of loss rates through a numerical simulations under
an error model that has the greatest variation in loss over
states. Finally we illustrate how the analytical model
breaks down when applied to systems that have reversible
(coherent) leakage to an ancillary level.
Average survival rates—In order to distinguish be-

tween inefficient detectors and lossy processes, we now
define survival rates. Many methods for character-
izing a process E (including randomized benchmark-
ing [11, 13, 14]) assume it is trace-preserving. However,
many experimental processes are not trace-preserving,
but instead a state ρ has a survival rate under E

S(ρ|E) =
Tr[E(ρ)]

Trρ
(1)

that is less than 1, or, equivalently, a nonzero loss rate
L(ρ|E) = 1 − S(ρ|E). Since the trace is linear and any
unnormalized density matrix is proportional to a unit-
trace density matrix, the survival rate averaged over
all states (hereafter the average survival rate) is simply
the survival rate of the maximally mixed state, that is,
S(E) := S( 1

dI|E). Correspondingly, the average loss rate
is L(E) = 1− S(E).
Experimental protocol—We now present a protocol for

characterizing the average survival rate S(E) in the ex-
perimental implementations {Eg} of a set of gates G =
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{g1, . . . , g|G|} that are at least a unitary 1-design (e.g., the
Pauli or Clifford groups) [15]. For simplicity, we assume
the noise is time- and gate-independent Markovian noise,
so that Eg = g ◦ E for some fixed map E where ◦ denotes
composition (i.e., apply E then g). This approach can
be extended to accommodate time- and gate-dependent
noise and a model of non-Markovian noise by applying
the approaches of Refs. [16–18].

Our protocol for estimating S(E) is as follows.

1. Choose a sequence length m ∈ N.

2. Choose a random sequence k = (k1, . . . , km) of
m integers uniformly at random, where kj ∈
{1, . . . , |G|}.

3. Prepare a state ρ.

4. Apply the sequence of gates gkm
◦ . . . ◦ gk1

.

5. Measure some operator Q (e.g., a self-adjoint oper-
ator or POVM element).

6. Repeat steps 3–5 to estimate

Qk = Tr [Qgkm ◦ E ◦ . . . ◦ gk1 ◦ E(ρ)] (2)

to a desired precision.

7. Repeat steps 2–6 to estimate

EkQk = |G|−m
∑
k

Qk (3)

to a desired precision (see, e.g., Ref. [17] for meth-
ods to bound the number of sequences required to
obtain a given precision).

8. Repeat steps 1–7 for multiple m and fit to the decay
curve

EkQk = D(Q)S(ρ|E)Sm−1(E), (4)

derived below, to obtain estimates of S(E) and
S(ρ|E)D(Q) where D(Q) = TrQ/d.

(Note that the above protocol differs from the random-
ized benchmarking protocol of Ref. [11] in that no inver-
sion gate is applied prior to the measurement.)

Results of numerical simulations of our protocol for a
specific loss model are illustrated in Fig. 1, demonstrating
the robust performance of our protocol.

For the numerical simulation, the set of operations G is
the set of single-qubit Paulis, and we modeled the error
as E as

E(ρ) = (|0〉〈0|+ α|1〉〈1|)ρ(|0〉〈0|+ α|1〉〈1|), (5)

where α = 0.99. The channel E corresponds to loss
from the |1〉 state and, as proven in Proposition 1 be-
low, has the greatest variation of loss over states. The
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FIG. 1. (Color online) Semilog plot of numerical data for
our protocol demonstrating robust identification of the aver-
age loss rate. The numerical data is obtained for loss model
described by Eq. (8). The data points are the estimates of
EkQk for m = 5, 10, ..., 100 obtained by sampling 30 random
sequences of single-qubit Pauli operators (unitary 1-design)
and the error bars are the standard errors of the mean. The
grey line is the fit to the model in Eq. (4), obtained using
MATLAB’s nlinfit package, which gave S(E) = 0.9900(2)
and D(Q) = 0.902(8), compared to the theoretical values
S(E) = 0.9901 and D(Q) = 0.910 respectively.

measurement was set to 0.87|φ〉〈φ|+ 0.95|φ⊥〉〈φ⊥| where
{|φ〉, |φ⊥〉} is a randomly-chosen orthonormal basis to
model an imperfect detector.
Analysis.—To derive the decay curve in Eq. (4), note

that averaging over all sequences corresponds to indepen-
dently averaging over all gkj

, so that

EkQk = Tr
[
QG ◦ E ◦ . . . ◦ G ◦ E(ρ)

]
(6)

where G(ρ) = |G|−1
∑

g∈G gρg
† (noting that a unitary

channel corresponds to unitary conjugation). Since G is
a unitary 1-design (and a linear map), G(A) = Tr(A)I/d
for all d × d matrices A [15, 19]. Therefore G ◦ E(ρ) =
S(ρ|E)I/d and G ◦ E(I/d) = S(E)I/d and so Eq. (6) sim-
plifies to Eq. (4).

The average survival rate obtained via our protocol is
one possible figure of merit that could be used to charac-
terize loss, with an important alternative being the worst-
case loss. However, as we now prove, the average loss
provides a practical bound for the worst-case loss:

Proposition 1. For any quantum channel E and state
ρ for a d-dimensional system,

L(ρ|E) ≤ L(E)d.

Moreover, for all d there exist channels E and states ρ
that saturate this bound.

Proof. Let ρ and E be arbitrary states of and channels for
a d-dimensional system. Since the trace is linear and any
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valid state can be written as ρ = τTrρ where τ is a unit-
trace density matrix, the survival rate is independent of
Trρ, so we assume Trρ = 1 without loss of generality.

Let ρ′ = (I − ρ)/(d − 1), which is a valid quantum
state since it is Hermitian and positive-semidefinite by
construction and has unit trace. Since ρ′ is a valid quan-
tum state, the probability of detecting a system in the
state ρ′ after applying E is a true probability and thus

dS(E)− S(ρ|E)

d− 1
=

Tr[E(I)− E(ρ)]

d− 1
= TrE(ρ′) ≤ 1, (7)

where we have used the fact that quantum channels and
the trace are linear. Rearranging and substituting L =
1− S gives the desired bound.

To see that the bound is saturated, fix d and consider
the channel

E(ρ) = [I+ (α− 1)|0〉〈0|]ρ[I+ (α− 1)|0〉〈0|] (8)

for α ∈ [0, 1]. For this channel,

E(|j〉〈j|) =

{
α2|0〉〈0| j = 0

|j〉〈j| j 6= 0,
(9)

so L(|j〉〈j||E) = δj(1− α2) and

L(E) =
1

d

∑
j

L(|j〉〈j||E) =
1− α2

d
. (10)

Therefore there exists a channel E and a state ρ such that
L(ρ|E) = L(E)d.

For average survival rates close to 1, the estimate of
S(ρ|E)D(Q) can be used to directly estimate D(Q), since

S(ρ|E)D(Q) ∈ [(1− d[1− S(E)])D(Q), D(Q)] (11)

by Proposition 1. Consequently, S(ρ|E)D(Q)/S(E) will
give an estimate of D(Q) that is accurate to within a
factor of (d − 1)L(E). Estimating D(Q) can be used to
estimate the efficiency of the detector as

η =
D(Q)

D(Qideal)
, (12)

where Qideal and Q are the ideal and actual measure-
ment operators. That is, η is the ratio of observed to ex-
pected detector “clicks”, averaged (independently) over
all states.

Choosing states and measurements.—Our protocol is
robust to SPAM errors, in that the choice of the state ρ
and measurement operator Q only effect the value of the
constant S(ρ|E)D(Q). However, there are two choices of
Q and ρ that have particular benefits.

(i) The most useful scenario corresponds to choosing G
to be a unitary 2-design [15] and choosing ρ,Q ≈ |0〉〈0|
as in randomized benchmarking [11]. There are two ma-
jor advantages to this choice. Firstly, with this choice

the same data can also be used to estimate the unitar-
ity of E , a quantitative measure of how the noise E ef-
fects the purity of input states [12]. Secondly, estimating
the constant prefactor in Eq. (4) with this choice is par-
ticularly useful because it allows an additional and vital
constraint to be imposed when fitting randomized bench-
marking data to the fidelity decay curve. In Ref. [11], it
was shown that the fidelity decay curve is

A(E ′)pm +B(E ′) (13)

where p is related to the average gate fidelity, E ′ is the
average error under the convention that the experimental
implementation of g is written as Eg = E ′ ◦ g (in contrast
to our choice of Eg = g ◦ E) and

A(E ′) = Tr[QE ′(ρ− I
d )]

B(E ′) = Tr[QE ′( Id )]. (14)

If the alternative convention of writing errors as E ′ ◦
g is applied to Eq. (6), then the constant prefactor
S(ρ|E)D(Q) in Eq. (4) becomes B(E ′). Since the fi-
delity decay curve is in terms of observable properties,
it is independent of the choice of convention and so
B(E ′) = S(ρ|E)D(Q). Obtaining a precise estimate of
the constant term for randomized benchmarking is im-
portant for two reasons. First, underestimating the con-
stant term B(E ′) [and hence overestimating the coeffi-
cient A(E ′)] will lead to an overestimate of the decay
parameter p, or, equivalently, an underestimate of the
average gate infidelity. That is, underestimating the con-
stant term will falsely indicate that the gates are perform-
ing better than they actually are. Second, the values of
the constants A and B in randomized benchmarking are
not completely independent: they must satisfy particular
constraints in order to correspond to physical Markovian
noise processes. In particular, for qubits, note that

B(E)−A(E) = Tr[QE(ρ⊥)] (15)

where ρ⊥ is the state whose Bloch vector is anti-parallel
to that of ρ. Therefore B(E)−A(E) is a probability and
so must be nonnegative if the noise is truly Markovian.
Consequently, if B(E)−A(E) is (strongly) negative, then
either the noise is non-Markovian or strongly gate depen-
dent and so the estimate of the average gate infidelity in
randomized benchmarking is not known to be accurate.
Moreover, if the prefactor S(ρ|E)D(Q) in Eq. (4) is es-
timated by setting m = 1, then the resulting estimate
is unaffected by the presence of non-Markovian effects
between sequential operations (since there is only one
operation applied). Therefore if the estimate obtained
by setting m = 1 differs from the estimate obtained from
fitting the randomized benchmarking data under the pro-
tocol of Ref. [11], then this disagreement indicates that
non-Markovian effects are present in the data for the lat-
ter.
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(ii) Alternatively, given any allowed choice of G, choos-
ing Q ≈ I and ρ to be any unit-trace density matrix will
maximize the value of the constant prefactor in Eq. (4),
reducing the number of experiments required to obtain
a desired precision (since EkQk is close to one for suf-
ficiently small m). Note that this data can be collected
under the same experimental configuration as case (i),
where Q = |0〉〈0| and G is a unitary 2-design, by simply
re-incorporating the outcomes associated with I−Q that
are discarded in case (i). This data gives independent
information because by assumption the probabilities of
these two outcomes are not constrained to add to 1 due
to presence of loss.

Coherent leakage.—A distinct, but closely related er-
ror to loss is (coherent) leakage, wherein the system is
“leaked” from the qubit subspace to other energy levels.
Leakage errors are non-Markovian errors on the qubit
subspace, since the system can return to the qubit sub-
space. Coherent leakage is a known consequence of con-
trol imperfections in certain implementations of the cou-
pling gate in ion traps [20] and the controlled-phase gate
in superconducting qubits [21, 22]. Fig. 2 shows the re-
sults of our protocol given a model of coherent leakage, in
particular, an error model for a random (fixed) unitary
acting on a qutrit with a random relative phase between
the leakage level and the qubit levels. The results ini-
tially appear to fit a single exponential decay, but then
quickly converge to a constant, similar to the behavior
observed in Ref. [23]. Consequently, if experimental data
for our protocol does not neatly fit a single exponential,
one explanation would be that there is a leakage level
that has not been accounted for. A simple protocol for
estimating rates of coherent leakage has been provided
previously in Ref. [24].

Conclusion—In this paper, we have presented a
platform-independent and robust protocol for character-
izing the average loss rate due to noisy implementations
of operations. Our protocol can also be used to estimate
the detector efficiency, provided the loss rate due to noisy
operations is sufficiently small. Since our protocol is easy
to implement, it is also a promising technique for exper-
imentally optimizing quantum control, as done, e.g. in
Ref. [25] using randomized benchmarking experiments.

Experimentally implementing our protocol yields a sin-
gle exponential decay curve which can be fitted to our
analytical expression to obtain the average loss rate. If
the experimental data deviates significantly from a sin-
gle decay curve, the experimental noise is either strongly
gate-dependent or non-Markovian. We have illustrated
that the decay can be observed and fitted in practice
through numerical simulations of loss for a specific er-
ror model and also that non-Markovian leakage to an
ancillary level results in a deviation from a single expo-
nential. However, fully characterizing how the present
protocol (and other randomization-based protocols) be-
have in the presence of non-Markovian noise remains an
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FIG. 2. (Color online) Semi-log plot demonstrating the signa-
ture of non-Markovian leakage under our protocol. Numerical
results obtained for a model of coherent leakage from a qubit
subspace to a third level under a small random unitary on the
full qutrit space. The data points are the estimates of EkQk

for m = 10, 20, ..., 300 obtained by sampling 30 random se-
quences of single-qubit Pauli operators and the error bars are
the standard errors of the mean.

open problem.

Our protocol is scalable and robust against state-
preparation and measurement errors. However, particu-
lar choices of preparations and measurements give extra
information. If the set of gates is chosen to be a uni-
tary 2-design and the preparation and measurement are
the same as those used in standard randomized bench-
marking, then our current protocol can be applied to
directly estimate one of the parameters in randomized
benchmarking and thus provides a test to indicate non-
Markovian noise. Furthermore, with this choice of prepa-
ration and measurement, the same data obtained via our
protocol can be used to estimate the unitarity presented
in Ref. [12] and thus to estimate how close the noise is
to depolarizing noise.

As with standard RB, obtaining rigorous confidence
intervals on the parameters obtained from our protocol
is still an open problem, though techniques bounding
the number of sequences to be sampled [17] and using
Bayesian methods to refine prior information [26] should
also be applicable to our protocol.
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