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We present a model to understand quantitatively the role of symmetry breaking in assembly of macromolecu-

lar aggregates in general, and the protein shells of viruses in particular. A simple dodecahedral lattice model with

a quadrupolar order parameter allows us to demonstrate how symmetry breaking may reduce the probability of

assembly errors and consequently enhance assembly efficiency. We show that the ground state is characterized

by large-scale cooperative zero-energy modes. In analogy with other models, this suggests a general physical

principle: the tendency of biological molecules to generate symmetric structures competes with the tendency to

break symmetry in order to achieve specific functional goals.

PACS numbers: Valid PACS appear here

The protein shells, or capsids, that surround the genomes of

viruses are frequently strikingly regular and elegant [1]. The

capsids of most spherical viruses have the symmetry of one of

the Platonic Solids: the icosahedron. In 1962 Donald Caspar

and Aaron Klug (CK) proposed a geometrical principle for

the construction of icosahedral viral capsids [2]. It starts by

drawing, on a hexagonal lattice, equilateral triangles whose

vertices are located at the lattice sites, one of which is the ori-

gin. The triangles can then be indexed by the pair of integers

h and k that determine the location of one of the two other

vertices in terms of the two basis vectors of the hexagonal lat-

tice. Icosahedra are then constructed by assembling together

twenty such triangles, replacing a hexagon by a pentagon at

each vertex. Different CK icosahedra are classified by their T

Number given by h2 + k2 + hk = 1, 3, 4, 7, 9, 13, . . . . Fig. 1

shows the case of T = 9 CK icosahedron with (h = 3,k = 0).

Actual capsids are formed by placing clusters of five (identi-

cal) proteins, or pentons, on the pentagons of a CK icosahe-

dron and clusters of six proteins, or hexons, on the hexamers,

adding up to a total of 60T proteins. The CK construction

has remained a fundamental organizing principle of structural

virology.

Proteins placed on the sites of a CK shell encounter T dif-

ferent local symmetries. Caspar and Klug argued that the CK

construction maximizes the symmetry of the shell and hence

minimizes the amount of intrinsic protein deformation gener-

ated by variations of the local environment. Given the success

of the CK construction, it was surprising when detailed re-

constructions of capsids by X-ray diffraction revealed numer-

ous examples of capsids that had the symmetry of a CK shell

but with capsid proteins at symmetry-inequivalent locations

that had very different conformations [3, 4]. In addition some

capsids violated the symmetry of the CK shell altogether [5].

These facts prompt a critical question for biophysics: how do

we explain symmetry breaking in macromolecular assembly,

and what function does it play?

Of particular relevance to this question are viral capsids
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FIG. 1: Construction of a CK T=9 icosahedron from an (h=3, k=0)

lattice vector creating an equilateral triangle. The perpendicular

height of the triangle is taken to be one. Blue: pentons. Gray:

penton-bordering hexons. Red: face-centered hexons. Bottom left:

lattice triangle constructed from an (h=3, k=0) lattice vector of a

stretched hexagonal lattice where the perpendicular height of the

triangle is increased by a factor λ. Second column: example of

hexamer protein configurations in the unstretched/mature (top) and

stretched/immature (bottom) capsid. These examples refer to the

Head II and Prohead II T=7 HK97 virus (ViperDB [17])

that switch between locally symmetric and asymmetric con-

formations. A well-studied case is the T = 7 bacteriophage

HK97 [6, 7]. During initial assembly, HK97 hexons have a

shear deformation of about 20 percent [8] that breaks local

symmetry. When DNA is injected into the shell—as part of

the virus assembly process—a capsid protein conformational

change takes place as a result of which the hexons adopt a

symmetric hexagonal shape, and the icosahedral capsid un-

dergoes a buckling transition, with its morphology changing

from spherical to facetted [9, 10].

HK97 is not exceptional but a member of a large class

of viruses that probably share a common ancestry [11]: the

eukaryote-infecting herpesviruses (Herpesviridae) and the

prokaryote-infecting tailed DNA bacteriophages (Caudovi-

rales). Their sizes range from T = 4 to T = 52. As far as is
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known, the capsid proteins of viruses belonging to this class

share with HK97 the particular protein fold motif that gener-

ates the symmetry breaking. For certain T numbers, including

T = 7, it is possible to construct a capsid from sheared hexons

while retaining icosahedral symmetry but for other T num-

bers, such as T = 9 and all T numbers for which T is divisi-

ble by 3 (see Supplementary Material I [12]), shearing is fun-

damentally incompatible with icosahedral symmetry because

there are twenty “face-centered” hexons that have three-fold

symmetry axes passing through their center (Fig. 1). In fact,

in the limit of large T numbers icosahedral symmetry must be

broken in the minimum energy configuration since proteins

located away from the five-fold sites must adopt the sheared

minimum energy configuration of the flat protein sheet. In this

letter we show that the CK construction can be generalized to

include hexon symmetry breaking. This generalized construc-

tion can be represented by a dodecahedral lattice model with a

quadrupolar order parameter on each site. We will first discuss

the general mathematical properties of this model and then use

thin-shell elasticity theory to construct an explicit T = 9 CK

shell assembled from sheared hexons to test it.

Assume that a CK icosahedral shell is assembled from a flat

sheet of isosceles shear-stretched triangles, of the form shown

in Fig. 1. Each triangle is constrained back into an equilateral

shape by a “pre-stress” before they are fitted together to form

an icosahedron. Every triangle can be in one of three states,

depending on the direction of stretch with respect to the three

pentagons that occupy the vertices of the triangle. After the

CK shell has been assembled the constraints are released and

the shell is allowed to relax to equilibrium—for a given set of

orientational choices. The resulting state of the shell can be

represented by a dodecahedral lattice model whose vertices

coincide with the centers of the faces of the icosahedron. On

each vertex, a double-headed arrow along the original stretch

direction is placed, projecting along one of the three edges

of the dodecahedron that meet at the vertex (Fig. 2A). This

construction generates 320 states in total. Since the double-

headed arrow represents a state of shear, it transforms under

an icosahedral symmetry operation as a two-by-two symmet-

ric tensor, so it will be referred to as a “quadrupolar” order

parameter.

Each state α of the system can be codified by a set of 20 in-

tegers {ni}, where ni = 1, 2, 3 gives the shear direction with

i = 1, .., 20 a site index running over the dodecahedral lat-

tice. Let Eα be the energy of the state α. It should be invariant

under any one of the 120 icosahedral symmetry operations.

By analogy with the lattice models of magnetism, it may

or may not be possible to express the energy as a sum Eα =
∑

i,j ǫ(ni, nj) over pairwise interactions between neighbor-

ing quadrupoles with ǫ(ni, nj) a “bond” energy. For now, as-

sume that this is the case. There are then 3 × 3 = 9 possible

bond configurations for each pair of neighboring quadrupoles

but only the four shown in Fig. 2B are not related by sym-

metry. Configurations 1 and 2 will be called “ferromagnetic”

since their stretch directions are aligned (after parallel trans-

port) while 3 and 4 will be called “antiferromagnetic” as they

A B

FIG. 2: Symbolic representation of an icosahedral CK shell con-

structed from stretched hexons. (a) The solid lines show the stretch

direction at the centers of the twenty faces of the icosahedron, which

span the dual dodecahedral lattice. The solid lines project onto one

of the three edges of the dodecahedron that connect a site to its three

neighbors. (b) Depiction of the four distinct bond patterns for pairs

of neighboring order parameters.

are more nearly perpendicular to each other. The correspond-

ing bond energies are denoted by ǫk=1,2,3,4. The bond occu-

pation numbers Cα1 − Cα4 are defined as the number of two-

site configurations of each of the four bond species. The total

(pairwise) interaction energy then equals

Eα = Cα1ǫ1 + Cα2ǫ2 + Cα3ǫ3 + Cα4ǫ4 . (1)

Because for every configuration α the total number of bonds
∑

k Cαk = 30 is fixed, changes in the bond occupation num-

bers must obey the condition

∆C1 +∆C2 +∆C3 +∆C4 = 0 . (2)

In Supplementary Material II [12], we provide a proof that

there exists a second conservation law, which imposes:

4∆C1 − 2∆C2 +∆C3 − 2∆C4 = 0 . (3)

These two conservation laws impose constraints on the bond

energies. If the bond energies are shifted by ǫi → ǫi+δi where

δ1 = δ+4η, δ2 = δ− 2η, δ3 = δ+ η, and δ4 = δ− 2η with δ
and η arbitrary then the change in energy∆Eα associated with

any change in the bond occupation numbers is not affected by

the shifts. This “gauge invariance” allows us to set the bond

energies ǫ2 and ǫ3 equal to zero. From the two conservation

laws, it follows that a zero energy state should have ten type

2 bonds and twenty type 3 bonds. Whether zero energy states

also are minimum energy states depends on the signs of ǫ1 and

ǫ4.

In order to explore whether the pairwise decomposition as-

sumption is valid and, if so, what the bond energies and min-

imum energy states are of the system, we numerically con-

structed a model capsid. It is known that certain physical

properties of large capsids, such as the buckling transition be-

tween spherical and polyhedral capsid morphologies and the

response to applied forces [13], are reproduced by thin-shell

elasticity theory where the shell energy is written as the sum

of a bending and a stretching term:

E =
1

2

∫

dA
[

κ(2H)2 +K(J − 1)2 + µ
(TrC

↔

J
− 2

)]

. (4)
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Here,C
↔

is the right Cauchy-Green strain tensor. The first term

is the bending energy, with κ the bending modulus and H the

mean curvature. The second and third terms account for area

dilation and isochoric shear, where K is the 2-D (area) bulk

modulus, J = (detC
↔

)1/2 is the deformed-to-reference area

ratio, and µ is the 2-D shear modulus. Energies will be ex-

pressed in units of κ and lengths in terms of the radius R of

a spherical capsid. The two dimensionless numbers KR2/κ
and µR2/κ were set at 940 and 470, respectively. For these

values, the Föppl-von Kármán number (FvK) γ = Y R2

κ , with

Y the 2-D Young’s Modulus, is equal to 1250, which is above

the threshold for the buckling transition and similar to the

value obtained for HK97 in its mature buckled morphology

[9].

E1 = 31.113 E2 = 31.156 E3 = 31.186

3 3

3

3 311

2 4

FIG. 3: Configurations used to compute energy tables: the orienta-

tion of the pre-stretch on the face-centered hexamer in the middle is

rotated over 120 degrees to compute the different types of interac-

tion energies. The non-zero bond energies follow from the relations

E2 − E1 = ǫ1 = 0.043 and E3 − E2 = ǫ4 = 0.030

Before assembling the shell, shear-stretched hexons were

constrained to adopt perfect six-fold symmetry so they could

be fitted onto a T = 9 CK shell after which the con-

straints were released. The energy was minimized following

the method of Ref.[10] using both the steepest gradient and

Monte-Carlo methods. As a function of the stretching fac-

tor λ (see Fig. 1), a (reverse) buckling transition takes place

with increasing λ from an icosahedral (outward pointing pen-

tamers) to a dodecahedral (flat pentamers and outward point-

ing hexamers) morphology near λ ≃ 1.06, the point where

the shell is spherical and the elastic energy has a minimum.

A similar buckling transition from icosahedral to spherical

is obtained by decreasing the capsid FvK number. However,

changes in λ allows the additional spherical to dodecahedral

transition and we focus here on the effect of different pre-

stretch rather than its interplay with FvK number as already

studied in [18]. Finally, we minimized the shell energy by al-

lowing flips of the orientational configurations of the hexons.

In all cases we found that in low energy states the stretch ori-

entation of the sixty penton-bordering hexons was fixed along

the hexon-penton interface while the orientations of the re-

maining twenty face-centered hexons fluctuated extensively.

In order to obtain the excitation energies ǫj we rotated single

hexons by steps of 120 degrees while maintaining all other

states in the same orientation. As shown in Fig. 3, the ǫj can

be obtained by computing changes in the deformation energy

when a single hexon is rotated. If the pairwise approxima-

tion is valid, then the changes in energy should not depend on

the background orientation of hexons that are not connected

to the “test” hexon. Supporting Material III [12] documents

the evidence that the pairwise approximation accounts for the

energy cost of order parameter flips with an error of about

six percent. In Fig. 4, computed non-zero bond energies are

plotted as a function of the stretch λ. Note the increase of

ǫ4 around the buckling transition where the shell transforms

from icosahedral to dodecahedral.
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λ = 1.03 λ = 1.06 λ = 1.09 λ = 1.12

FIG. 4: Non-zero bond energies ǫ1 and ǫ4 in units of the bending

energy κ as a function of the stretch λ. The corresponding capsid

morphology is shown below the graph. Notice that, since the order

parameter distribution is not icosahedral symmetric, it follows that

the capsid morphologies are not strictly icosahedral or dodecahedral

symmetric.
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FIG. 5: A zero-energy mode: six zero energy states that can be trans-

formed into each other by the rotation of the order-parameter on one

site. Type 2 bonds are shown thick and red, while type 3 are thin and

black. The bond that is about to be moved is indicated by a dot.

Since ǫ1 and ǫ4 are always positive, the zero energy states of

the lattice model indeed are the minimum energy states. Us-

ing the lattice model, we determined the energy spectrum for

the bond energies ǫ1 = 0.04 and ǫ4 = 0.03 obtained for the

buckling transition at λ = 1.06. When we randomly sampled
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3×106 of the 320 configurations we encountered only 16 zero

energy configurations that were not related by an icosahedral

symmetry operation while for 3× 107 configurations, we en-

countered 155 such zero energy configurations. Based on this,

we estimate that there are ∼ 2−3×102 non-equivalent degen-

erate zero energy configurations. Fig. 5 shows an example of

six zero-energy configurations. The six states shown in Fig. 5

are part of a connected family of states that can be transformed

into one other by successive single rotations, each one involv-

ing the relocation of one type 2 bond. Such a connected fam-

ily of zero-energy states will be called a “zero-mode”. Typ-

ically, for every zero-energy state, there are multiple choices

for zero-mode, single-spin rotations. The largest zero-mode

we found has 167 members, but there are also zero-energy

states that are isolated in the sense that they are not connected

to any other zero-energy state by a single rotation. Perform-

ing a systematic survey, we have found zero modes with 1, 4,

9 ,11, 14, 41, 121 and 167 members.

0 3 000 000
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Energy
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FIG. 6: Energy spectrum of the lattice model for ǫ1 = 0.04 and

ǫ4 = 0.03 in units of the bending energy. Horizontal axis right: states

ordered from low to high energy. Horizontal axis left: degeneracy

level. Vertical axis: energy in units of the bending energy.

The spectrum of excited states for the 3 × 106 randomly

sampled states is shown in Fig. 6. When states are rank-

ordered according to energy (right-hand side), it is seen that

the spectrum has a funnel-like structure, reminiscent of the

one encountered in the theory of protein folding [14]. The

level degeneracy (left-hand side) increases dramatically as the

funnel broadens out, resembling the molten-globule state of

protein folding. The heat capacity has a pronounced maxi-

mum as a function of temperature when the thermal energy is

comparable to the plateau energies of the spectral funnel (see

Supplementary Material IV [12]).

We have shown that hexon symmetry breaking by shear-

stretching in the CK construction leads to a statistical mechan-

ics model whose ground state is degenerate and characterized

by cooperative zero-energy modes. These ground states lie

at the bottom of a funnel of higher-energy states that have a

rapidly increasing level of degeneracy. It is of interest to place

the results in the context of the literature on the symmetry of

protein oligomers. Functional protein oligomers formed from

identical protein blocks often are symmetric [15], most likely

because symmetric clusters allow for the formation of a max-

imum number of stable bonds [16]—an argument similar to

that of CK. The tendency to generate symmetric protein struc-

tures with optimal thermodynamic stability and assembly ki-

netics competes with the tendency of biological molecules to

break symmetry in order to achieve specific functional goals

[15]. The breaking of icosahedral symmetry of the hexons

of large viral capsids by shearing may be a functional fea-

ture of capsid assembly in this sense. Just like chaperonins

promote protein folding by preventing unwanted interactions

[14], hexon symmetry breaking may reduce the probability of

capsid assembly errors by weakening bonding energies hence

allowing for more reversible, error-correcting assembly steps.

Conformational changes following capsid assembly are then

expected to increase the binding strength as hexon symmetry

is restored, which is the case for HK97 [7, 8].
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