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     The quantum anomalous Hall (QAH) effect is predicted to possess, at zero magnetic 

field, chiral edge channels that conduct spin polarized current without dissipation. While 

edge channels have been observed in previous experimental studies of the QAH effect, their 

dissipationless nature at a zero magnetic field has not been convincingly demonstrated. By 

a comprehensive experimental study of the gate and temperature dependences of local and 

nonlocal magnetoresistance, we unambiguously establish the dissipationless edge transport. 

By studying the onset of dissipation, we also identify the origin of dissipative channels and 

clarify the surprising observation that the critical temperature of the QAH effect is two 

orders of magnitude smaller than the Curie temperature of ferromagnetism.  

         Dissipationless edge transport in quantum Hall (QH) effect has resisted technological 

applications due to the requirements of high magnetic fields and low temperatures [1]. At least 

one of these two can be circumvented in the so-called quantum anomalous Hall (QAH) state in a 

ferromagnetic topological insulator (TI), which occurs from the combination of a topologically 



2 
 

non-trivial inverted band structure and an intrinsic spontaneous magnetization (M). The most 

striking property of QAH state is the presence, at a zero magnetic field, of spin-polarized chiral 

edge channels that carry current without any dissipation whatsoever [2-4]. In the previously 

reported QAH state in the Cr-doped TI system [5-8], a sizable longitudinal resistance was 

observed (at zero magnetic field), possibly as a result of the residual nonchiral dissipative 

channels [9], thus hampering a direct observation of the dissipationless nature of chiral edge 

states in nonlocal measurements [6]. 

In our previous work on V-doped (Bi,Sb)2Te3, we have observed a robust zero-field quantized 

Hall plateau accompanied by a negligible longitudinal resistance [10]. However, it had not been 

unambiguously identified that the dissipationless transport was occurring via chiral edge 

channels. Furthermore, the physical origin of dissipation has not been clarified. The 

identification of dissipative channels will be essential in attempts to increase the critical 

temperature of the QAH state, which is almost two orders of magnitude smaller than the Curie 

temperature of ferromagnetism in magnetically doped (Bi,Sb)2Te3 [5-7,10].  To address these 

issues, we turn to nonlocal transport measurements, which provided definitive experimental 

evidence for the existence of chiral edge channels in the ordinary QH state at high magnetic 

fields [1] and also for helical edge channels in the quantum spin Hall (QSH) state at a zero 

magnetic field [11]. In this Letter, we combine two-, three- and four-terminal local and nonlocal 

measurements to extract information on different conducting channels and directly reveal zero-

field dissipationless nature of chiral edge modes and the onset of dissipative channels for the 

QAH state in V-doped (Bi,Sb)2Te3.   

 The four quintuple layers (QL) V-doped (Bi,Sb)2Te3 films studied here were grown by 

molecular beam epitaxy (MBE). The transport studies were done using a dilution refrigerator 
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(Leiden Cryogenics, 10mK, 9T) with the excitation current flowing in the film plane and the 

magnetic field applied perpendicular to the plane. Six-terminal Hall bridges with bottom-gate 

electrodes were formed in order to investigate the transport mechanism in detail [10].  

 We start from local transport measurements for different terminals. Figure 1(a) shows the 

magnetic field (μ0H) dependence of the two-terminal resistances, measured at T=25mK, using a 

bottom gate bias Vg=Vg
0=+7V to reach the charge neutral point. The two-terminal resistances 

ρ12,12, ρ13,13 and ρ14,14 show exactly h/e2 quantized values when the magnetization M is well 

defined. (Note that the first two subscripts of the resistivity refer to the current leads and the last 

two to the voltage leads.) However, local two-terminal resistance measurement cannot reveal the 

chirality of the edge transport explicitly.  

To probe the detailed flow of the edge channels, we have performed local three-terminal 

resistance measurements at T=25mK with Vg=Vg
0, as shown in Figs. 1(d) to 1(e). The resistances 

ρ14,13 and ρ14,12 (Fig.1(d)) display similar loops that are asymmetric At μ0H=0, the ρ14,13 and ρ 

14,12 values depend on the magnetization M orientation, with a value of h/e2 for M>0 and 0 for 

M<0, respectively. The resistances ρ14,16 and ρ14,15 display loops that are mirror symmetric to 

ρ14,12 and ρ14,13 by , as shown in Fig. 1(e).  At μ0H=0, ρ14,16 and ρ14,15 are 0 for M>0 

and h/e2 for M<0. The asymmetric loops of three-terminal resistance and the relation between 

ρ14,16 (ρ14,15) and ρ14,12 (ρ14,13) are direct manifestation of the chirality of edge transport, which 

can be understood from the Landauer-Buttiker formalism [12, 13]. In the QAH regime for M<0, 

since chiral edge modes propagate anticlockwise (1 2 3… , the transmission coefficients, 

denoted as Tij from electrode j to i, are non-zero only for T21=T32=T43=1. When current flows 

from electrodes 1 to 4 (Fig. 1(c)), the voltage distributions are V2=V3=V1=(h/e2)I and 

V6=V5=V4=0, where Vi denotes the voltage at the electrode i. Thus, the corresponding resistance 
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is ρ14,13=ρ 14,12=0 and ρ14,14=ρ14,16=ρ14,15=h/e2. Likewise for M>0, chiral edge modes travel 

clockwise and the nonzero transmission matrix elements are T61=T56=T45=1, leading to the 

resistance ρ14,14=ρ14,13=ρ14,12=h/e2 and ρ14,16=ρ14,15=0. The electrical potential distributions for 

M<0 and M>0 (see Fig. S9) can also be calculated using the conformal-mapping technique [17]. 

Hence at μ0H=0, the two-terminal resistance ρ14,14 is always quantized at h/e2 regardless of the M 

orientation. In contrast, the three-terminal local resistances ρ14,13 (or ρ14,12) and ρ14,15 (or ρ14,16) 

depend on the M orientation, as seen in Figs. 1(d) and 1(e).  

Both two- and three-terminal resistances deviate from the quantized value near the coercive 

fields (Hc) giving rise to two sharp resistance peaks, as shown in Figs. 1(a), 1(d) and 1(e). This 

corresponds to plateau-to-plateau transition (PPT) region [10]. The heights of the resistance 

peaks for different terminal measurements are different. We plot the highest resistance values of 

ρ12,12, ρ13,13 and ρ14,14 as a function of the distance between these terminals, as shown in Fig. 1(b),  

and find a linear dependence between resistance and distance. This suggests that in the PPT 

region, the transport is occurring through the bulk of the system [14]. In contrast, the two-

terminal resistance of any pair of electrodes is always h/e2 independent of the length in the QAH 

regime, which is further consolidated by various quantized rational numbers for different 

interconnections among the electrodes at the periphery of the six-terminal Hall bridge (see Figs. 

S1 and S2). This h/e2 quantized two-terminal resistance is similar to that in QH effect of a two-

dimensional electron gas (2DEG) [15,16], with the important distinction that the ballistic edge 

channels of the QAH state survive without an external magnetic field. Furthermore, the ballistic 

transport with h/e2 quantized resistance indicates the propagation of single spin species, in 

contrast to the QH state for which the spin polarization of the edge channels requires Zeeman 

coupling to an externally (usually large) applied magnetic field [1].  
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 By comparing local measurement with non-local measurement, we can also reveal distinct 

behaviors for ballistic chiral edge transport and diffusive bulk transport. In Fig. 2(a), the current 

was passed through electrodes 3 and 1, while the three-terminal local and nonlocal resistances 

ρ31,32, ρ31,34, ρ31,35, and ρ31,36 were measured at T=25mK with Vg=Vg
0. The μ0H dependence of 

ρ31,32 is also symmetric to those of ρ31,34, ρ31,35, and ρ31,36 (Fig. 2(b)) by , thanks to 

the chirality of the edge current. An interesting feature is that ρ31,32 and ρ31,36 show dramatic 

peaks in the PPT region with a value of several h/e2, while ρ31,34 and ρ31,35 vary between h/e2 and 

0 smoothly without any peaks. The peaks in ρ31,32 and ρ31,36 are induced by contributions from 

the local diffusive longitudinal resistance through the bulk. Since no local longitudinal 

resistances were picked up, no peaks appeared in ρ31,34 and ρ31,35.  

In the above, we have shown that by carefully tuning the Vg, we can achieve, at the lowest 

temperatures, purely dissipationless chiral edge transport, and the bulk transport only occurs in 

the PPT region. Next we will explore the origin of dissipation at a zero magnetic field when 

temperature is increased. We focus on the four-terminal non-local measurement configuration 

where electrodes 2 and 6 were designated as the current electrodes while electrodes 3 and 5 were 

used as the voltage probes (Fig. 3(b)). Other cases are presented in [14]. In Figs. 3(a) and 4(h), 

at the lowest temperature T=25mK, ρ26,35 is 0 (in the non-PPT region) regardless of the direction 

of M, consistent with the picture of a pure chiral edge transport [18]. With increasing 

temperature, ρ26,35 exhibits a hysteresis loop with a decreasing Hc, as shown in Fig. 3(a). The 

observation of hysteresis, i.e. high and low nonlocal resistance states at a higher temperature, 

indicates the appearance of other dissipative channels besides chiral edge modes. Figure 3(d) 

shows the zero-field non-local signals as a function of temperature, which increase rapidly with 

temperature up to 2K, accompanied by an increase of longitudinal resistance ρ14,23 and a 
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decrease of Hall resistance ρ14,35, as shown in Fig. 3(c). At the same time, the resistance peaks in 

the PPT region decay rapidly (Fig. 3(e)). The different temperature dependences between zero 

field non-local signals and the resistance peak in the PPT region suggest that they should have 

different origins. In Fig. 1(b), we have confirmed that the resistance peak in the PPT region 

follows a linear dependence on distance, thus coming from the bulk carriers. This linearity and 

the different temperature dependences indicate that the bulk carriers are not responsible for 

nonlocal signals.  A possible explanation comes from the existence of non-chiral edge channels, 

which have been invoked previously to explain a similar hysteresis loop of non-local voltage in 

Cr doped (Bi,Sb)2Te3 [6]. In that experiment, however, the hysteresis loop was observed at the 

lowest temperature, indicating the existence of gapless quasihelical edge modes [9]. For our 

system, the observation of zero longitudinal and non-local resistances at the lowest temperature 

(with Vg=Vg
0) rules out gapless modes.  Nevertheless, gapped nonchiral edge modes are possible, 

and, as we argue below, plausible. These non-chiral edge modes originate from two dimensional 

Dirac surface states on the side surfaces, which are quantized into one dimensional edge modes 

due to the confinement of finite thickness [9,19].  

Our physical picture that the hysteresis loop of non-local signals comes from the coexistence 

of chiral and non-chiral edge modes finds strong support from the Vg dependence of local and 

non-local measurements. Figs. 4(a) to 4(e) show longitudinal sheet resistance ρ14,23  and Hall 

resistance ρ14,35 at different Vg and the corresponding non-local resistance ρ26,35 are shown in 

Figs. 4(f) to 4(j). A pronounced asymmetry between Vg>Vg
0 and Vg<Vg

0 is observed. At T=25mK 

with Vg=Vg
0 when the Fermi energy is in the excitation gap, ρ14,35 is fully quantized and ρ14,23 

simultaneously vanishes. The value of non-local resistance ρ26,35 is always 0 except at the PPT 

region (see Figs. 4(c) and 4(h)). For Vg>Vg
0, ρ14,23 and ρ14,35 have almost no significant change 
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(Figs. 4(d) and 4(e)), while a hysteresis loop appears for the non-local resistance ρ26,35 (Figs. 4(i) 

and 4(j)). In contrast, for Vg<Vg
0, a huge ρ14,23  is observed while the non-local resistance ρ26,35 is 

always close to zero (Figs. 4(f) and 4(g)). The variation of ρ14,23 and ρ14,35, as well as non-local 

resistance ρ26,35, as a function of Vg is summarized in Figs. 4(k) and 4(l). The ratio between ρ26,35 

and ρ14,23 is around 10  for M>0 in the Vg>Vg
0 regime, significantly larger than its value 10  in 

the Vg<Vg
0 regime, as shown in Fig. 4(m).  

The asymmetry between Vg>Vg
0 and Vg<Vg

0 can be understood from the detailed band structure 

of (Bi,Sb)2Te3 and the positioning of the gap relative to the valence and conduction bands.  From 

the previous ARPES measurements [20,21] and the first principles calculations [22,23], it is 

known that the surface Dirac cones are far away from the bulk conduction band bottom and quite 

close to (even buried in) the valence band. For our magnetic topological insulator system, the 

energy spectrum is schematically shown in Fig. 4(o). The green part represents the 2D bulk 

bands of the thin film, which originates from both the 3D bulk bands and 2D surface bands of 

top and bottom surfaces. The gap of 2D bulk bands should be determined by the exchange 

coupling between surface states and magnetization M. Within the 2D bulk gap, there are two 

types of 1D edge modes: the chiral modes and the non-chiral edge modes originating from 

surface states of side surfaces as discussed earlier [9,19]. The pure dissipationless chiral edge 

transport only occurs when the Fermi energy is tuned into the mini-gap of non-chiral edge modes, 

which is induced by the confinement effect of the side surface [9] and lies close to the maximum 

of the valence band. For Vg>Vg
0, the Fermi energy first cuts through the non-chiral edge modes, 

leading to a hysteresis loop of non-local resistance due to the coexistence of two types of edge 

modes. In contrast, for Vg<Vg
0, the Fermi energy will first encounter the top of 2D (bulk) valence 

bands, resulting in a large ρ14,23 and an insignificant non-local resistance ρ26,35. It is known that 
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the classical longitudinal transport can also contribute to non-local effect, for which the ratio 

between non-local resistance ρ26,35  and ρ14,23 can be estimated as ,, , where  and  is 

the length and width of the sample [9]. In our case, ~3, so this ratio is estimated around 8 10 , which can explain the observed non-local resistance ratio 10  in the Vg<Vg
0 regime, 

but not that 10  in the Vg>Vg
0  regime. Therefore, non-local signals as well as the hysteresis 

loop for Vg>Vg
0 should be dominated by the mechanism of the coexistence of chiral and non-

chiral edge modes.  

     The above physical picture is also consistent the temperature dependence of longitudinal and 

non-local resistances in this system. With increasing temperature, ρ14,23 increases rapidly (Fig. 

3c), indicating the existence of bulk carriers. At the same time, the observation of hysteresis loop 

suggests that non-chiral edge modes should also appear. According to the band dispersion in Fig. 

4(o), we speculate that finite temperature excites electrons from 2D valence bands to 1D non-

chiral edge channels, so that both 2D bulk holes and 1D non-chiral edge electrons coexist in the 

system (Fig 4(n)). The excitation gap, as indicated in Fig. 4(o), is estimated as 50μeV by fitting 

temperature dependence of ρ14,23, which is consistent with the theoretical prediction [9] and 

discussed in detail in the supplementary material [14]. This excitation gap is expected to be much 

smaller than the 2D bulk gap due to magnetization [24] and is consistent with the low critical 

temperature for the QAH effect. Besides these two kinds of dissipative channels, one should note 

that other states, such as acceptor or donor states due to impurities, could also exist in the system 

and cause dissipation.      

      In summary, our measurements provide a clear and direct confirmation of dissipationless 

chiral edge transport in the QAH state, identify different types of dissipative channels and 
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provide insight into why the critical temperature for the QAH effect is two orders of magnitude 

smaller than the Curie temperature of the ferromagnet. The identification of dissipative channels 

may suggest ways to increase the critical temperature of the QAH effect, which will be crucial 

for its use in spintronics as well as for new chiral interconnect technologies [25]. For example, 

one can consider even thinner film to reduce the number of non-chiral edge modes and increase 

the mini-gap between non-chiral modes and valence bands. Alternatively, one can also try to 

reduce the Bi component in the sample to lower the energy of the valence band top, so that all 

the edge modes can be well above the valence band.   
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Figures and Figure captions: 

 

Fig. 1. (color online) Local two-terminal and three-terminal measurements in the QAH regime. (a) 

Magnetic field (μ0H) dependence of two-terminal local resistances ρ12,12, ρ13,13 and ρ14,14.  (b) The 

peak value near the coercive field (Hc) of two-terminal resistances ρ12,12, ρ13,13 and ρ14,14 as a 

function of the spacing length l(mm) between the voltage electrodes. The inset photograph shows 

the Hall bridge device. (b) Schematic layout of the device applicable for panels (d) and (e) and 

also for ρ14,14 in (a). The current flows from 1 to 4. The red and blue lines indicates the chiral 

edge current for magnetization into (M<0) and out of the plane (M>0), respectively. (d, e) μ0H 

dependence of three-terminal resistances ρ14,13, ρ14,12 (d) and ρ14,15, ρ14,16 (e).  
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Fig. 2. (color online) Local and nonlocal three-terminal measurements in the QAH regime. (a) Chiral 

edge conduction channels when the current flows from 3 to 1. (b) μ0H dependence of local and 

nonlocal three-terminal resistances ρ31,32, ρ31,34, ρ31,35, and ρ31,36 measured at T=25 mK with 

Vg=Vg
0.  

 

Fig. 3. (color online) Temperature dependence of chiral edge transport in QAH regime. (a) μ0H 

dependence of the nonlocal resistance ρ26,35 measured at Vg=Vg
0 from 25 mK to 20 K. (b) Chiral 

edge conduction channels when the current flows from 2 to 6, and the nonlocal voltage measured 

between 3 and 5. (c) Temperature dependence of the zero-field longitudinal sheet resistance 

ρ14,23(0) (blue curve) and Hall resistance ρ14,35(0) (red curve). (d) Temperature dependence of 
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zero-field nonlocal signal ρ26,35(0) for M<0 (red curve) and M>0 (blue curve), respectively. (e) 

Temperature dependence of nonlocal resistance ρ26,35 peaks in the PPT as seen in (a) going 

between two magnetization orientations.  
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Fig. 4. (color online) Gate bias dependence of chiral edge transport in QAH regime. (a to j) μ0H 

dependence of longitudinal resistance ρ14,23 and Hall resistance ρ14,35 (a to e), as well as the 
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nonlocal signal ρ26,35 (f to j) at various Vgs. (k) Vg dependence of the zero-field longitudinal  sheet 

resistance ρ14,23(0) (blue curve) and Hall resistance ρ14,35(0) (red curve). (l) Vg dependence of 

zero-field nonlocal signal ρ26,35(0) for M<0 (red curve) and M>0 (blue curve), respectively. (m) Vg 

dependence of the ratio between non-local resistance ρ26,35(0) for M>0 and longitudinal sheet 

resistance ρ14,23(0). Note that the non-local resistance ρ26,35(0) for M>0 indicates that the 

dissipation channels in the voltage probe side. (n) The schematic diagrams identify three channels 

in the sample: dissipationless edge channels (red arrows), dissipative edge channels (blue arrows) 

and dissipative bulk channels (green arrows). (o) The schematic band dispersions of the sample. 

The horizontal dash-dotted line indicates the Fermi level position for Vg>Vg
0 and Vg<Vg

0, 

respectively. The excitation gap is defined as the energy difference between the bottom of the 

non-chiral edge mode and the maximum of bulk valence band as indicated.  


