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A first-principles approach to the construction of concentration-temperature magnetic phase diagrams of

metallic alloys is presented. The method employs self-consistent total energy calculations based on the co-

herent potential approximation for partially ordered and noncollinear magnetic states and is able to account for

competing interactions and multiple magnetic phases. Application to the Fe1−xMnxPt “magnetic chameleon”

system yields the sequence of magnetic phases at T = 0 and the c-T magnetic phase diagram in good agree-

ment with experiment, and a new low-temperature phase is predicted at the Mn-rich end. The importance of

non-Heisenberg interactions for the description of the magnetic phase diagram is demonstrated.

Magnetic substitutional alloys are often found to excel in

applications [1, 2], because alloying broadens the parame-

ter space for tuning the desired properties. However, wide

tunability, combined with the need to target certain operating

temperature ranges, presents a challenge for empirical mate-

rials design. Competing magnetic interactions in alloys can

produce complicated magnetic phase diagrams (MPD) with

multiple magnetic phases [3–6]. Understanding of the c-T

MPD’s is therefore essential for the development of advanced

magnetic materials.

Some MPD’s can be computed using the Heisenberg model

with empirical or calculated exchange parameters combined

with the mean-field approximation (MFA) [7, 8] Monte-Carlo

simulations [9–12], or spin-fluctuation theory [13]. However,

many systems are not adequately described by the Heisenberg

model. In metallic alloys the interaction parameters are sensi-

tive to the electronic structure and population and thereby to

the content of the alloy [8, 9, 11] and to the degree of spin dis-

order [14]. To avoid the limitations of the Heisenberg model,

one can use first-principles spin-dynamics simulations [15]

or construct a generalized spin Hamiltonian to map the adi-

abatic energy surface [16, 17] for use in thermodynamic cal-

culations. The energies of disordered spin configurations can

also be obtained using the disordered local moment (DLM)

model [18, 19], where the spin-rotational averaging is done in

the coherent potential approximation (CPA). While all these

approaches fail in strongly itinerant magnets, they are applica-

ble when the spin moments do not vary by more than 10-20%

in different spin configurations. We restrict ourselves to such

systems here.

First-principles spin-dynamics and the construction of a mi-

croscopic generalized spin Hamiltonian are computationally

very demanding and unfeasible for most systems of practi-

cal interest. We have developed [20] an alternative approach,

in which self-consistent DLM and noncollinear CPA calcu-

lations are used to construct a Ginzburg-Landau-type total-

energy functional expressed through a small number of rele-

vant magnetic order parameters. Combined with the MFA ex-

pression for the magnetic entropy, this method provides the

variational free energy. A similar scheme was used to de-

scribe the phase transitions in FeRh [21]. Here we show,

using the Fe1−xMnxPt disordered alloy system as a test case,

that this efficient approach is sufficiently powerful to explain

and refine a complicated MPD, not only reproducing the five

known magnetic phases but also predicting another, hidden

low-temperature phase in this system.

Fe1−xMnxPt alloys are of interest for ultrahigh-density mag-

netic recording and medical applications [22]. Their structural

ordering is of the L10 type in the fcc sublattice, with (001)

layers of Pt alternating with disordered Fe/Mn layers. Neu-

tron diffraction measurements revealed three collinear and two

noncollinear phases [23]. The collinear phases are the ferro-

magnetic (F) phase at the Fe-rich end, the C-type antiferro-

magnetic phase at the Mn-rich end, and the G-type antiferro-

magnetic phase in the middle of the diagram. The correspond-

ing ordering wave vectors are QF = (0, 0, 0), QC = (1, 0, 0),

and QG = (1, 0, 1/2) in units of 2π/a (or 2π/c for the z com-

ponent). The transitions between the collinear phases occur

through intermediate 2Q phases combining the corresponding

orderings for two orthogonal spin components (see Supple-

mental Material [24] for an illustration).

The samples studied in Ref. 23 show a high degree of L10

order at all concentrations, which is consistent with the fact

that magnetic ordering occurs well below the structural or-

dering temperatures in these alloys. Therefore, as a practical

simplification we assumed perfect L10 ordering and complete

disorder of Fe and Mn atoms within their own sublattice. The

method can also be applied to alloys with partial chemical or-

dering and in principle allows one to study the coupling be-

tween magnetic and chemical order parameters [25].

To construct the energy functional, we have extended our

CPA implementation [26, 27] based on the tight-binding lin-

ear muffin-tin orbital formalism [28] by special features de-

signed to describe complicated magnetic states. First, we im-

plemented the vector DLM (VDLM) model, in which partially

ordered magnetic states are specified by the Curie-Weiss dis-

tribution functions piµ(θ) ∝ exp(αiµ cos θ), where i is the lat-

tice site and µ the component index; αiµ are regarded as vari-

ational parameters. This formulation is suitable for systems

with axial spin symmetry, i. e. those with collinear magnetic

order. Different spin moment orientations are treated as dif-

ferent alloy components in the CPA formalism. The integral
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over the azimuthal angle in the CPA equations is taken analyt-

ically, while the θ dependence is discretized using the 16-point

Gauss-Legendre quadrature. The potentials for all atoms are

determined by embedding the CPA self-consistency loop into

the density-functional theory (DFT) charge iteration. To en-

force magnetic self-consistency, constraining transverse mag-

netic fields [29, 30] are introduced for each orientation of the

spin moment and determined self-consistently. Local density

approximation is used for exchange and correlation.

The second feature extends CPA to the noncollinear case, in

which the orientations of the spin moments of different com-

ponents on the same lattice site can be different. This method

is suitable, in particular, for the studies of 2Q structures ap-

pearing in the Fe1−xMnxPt system. Self-consistent constrain-

ing fields are also used in these calculations. Both VDLM and

noncollinear CPA calculations yield the DFT total energy.

Let us first examine the magnetic interactions in the vicin-

ity of the paramagnetic state. We set up a unit cell for each of

the three magnetic orderings and calculate the total energy for

about 70 partially ordered VDLM states with |αFe| and |αMn|

ranging from 0 to 3. Experimental lattice constants are used

at the concentrations reported in Ref. [23]. At each concen-

tration the calculated total magnetic energy Emag (per Fe/Mn

atom, referenced from the paramagnetic state) is fitted to

even fourth-order polynomials in the reduced magnetizations

mµ = 〈cos θµ〉, which are expressed through the fields αν by

the Langevin function. The quadratic part of these polynomi-

als, EQ =
1
2

JFeFe(Q)m2
Fe
+ 1

2
JMnMn(Q)m2

Mn
+ JFeMn(Q)mFemMn,

defines the component-resolved effective exchange interac-

tions Jµν(Q) for the three orderings. Since the total energies

are calculated with constraining fields, these exchange param-

eters are free from the errors associated with the long-wave

approximation [31]. The results are shown in Fig. 1.

The concentration dependence of the parameters Jµν(Q)

shows that, in agreement with experiment, the F, G, and

C-type orderings are favored at the Fe-rich end, in the

middle, and at the Mn-rich end, respectively. Further in-

sight can be obtained from the reduced exchange param-

eters that are normalized by the concentrations, J̃µν(Q) =

Jµν(Q)/(cµcν), shown in Fig. 2. These reduced quantities

would be concentration-independent in a Heisenberg system

with pair exchange parameters Jµν(R) depending only on the

distance and the identity of the atoms in a pair. We see that the

parameters J̃µν(Q) for like components (i. e. Fe-Fe and Mn-

Mn) are almost constant for all ordering vectors, as well as

the reduced Fe-Mn coupling for the F ordering. However, the

reduced Fe-Mn couplings at the G-type and C-type ordering

vectors depend strongly on the concentration, which reflects

the effect of band filling on the exchange interaction in metal-

lic systems.

The local spin moments of Fe and Mn increase by about

10% as x goes from 0 to 1 (for example, from 2.87 to 3.11 µB

for Fe and from 3.35 to 3.74 µB for Mn in the paramagnetic

phase), and similar variations are observed for different phases

and spin directions. The adiabatic approach [19] is thus well

suited for this system. We also repeated some calculations

without the constraining magnetic fields, which is equivalent

to making the long-wave approximation [31], and found that

the resulting errors in Jµν for all phases do not exceed 5-7%.

To further extend the mapping of the magnetic configura-

tion space, we performed noncollinear CPA calculations for

the F/G, G/C, and F/C noncollinear 2Q phases in the relevant

concentration ranges. These calculations are needed to reveal

the possible interaction between orderings at different Q in the

2Q structures, which can appear in quartic and higher-order

interaction terms. A 2Q structure is parameterized by two an-

gles, θFe and θMn that the spin moments of Fe and Mn atoms

make with the z axis. (The z and x components of the magne-

tization order with one or the other of the Q vectors.) Using

the symmetries, the accessible space of (θFe, θMn) is reduced

to the range 0 ≤ θFe ≤ π/2, −π ≤ θMn ≤ π with additional

θMn → π − θMn symmetry at θFe = π/2 and θMn → −θMn

symmetry at θFe = 0. This irreducible domain is covered by a

uniform mesh of 38 points.

For a particular 2Q phase (say, F/G) we then combine the

data from the separate VDLM calculations for the F and G

phases with those from the noncollinear CPA results for the

2Q phase and fit the magnetic energy at the given concen-

tration to a polynomial in the order parameters mFe,F, mFe,G,

mMn,F, and mMn,G. We allowed all symmetry-respecting terms

in the polynomials of up to sixth order (see Supplemental Ma-

terial [24] for details). The high accuracy of the fits is illus-

trated in Fig. 3a for the F/G phase at x = 0.26; all other fits

are of similar accuracy. Fig. 3b shows the magnetic energy

as a function of θFe, θMn in the same phase at x = 0.26. At

this concentration there are two minima: the global one at

(π/2, π/2) corresponding to the collinear G-type phase, and a

local one near (π/6, π/2) corresponding to the 2Q phase. At a

lower concentration there is a first-order transition where the

2Q minimum goes below the G-type minimum.

Using the combined fits for the magnetic energy, we now

determine the ground states for all concentrations by choosing

the lowest energy of all the competing phases. The results are

shown in Fig. 4. We find that the F phase is stable at x < 0.11

and the G phase at 0.23 < x < 0.66. There is a 2Q F/G phase

at 0.11 < x < 0.23 separated from F by a second-order and

from G by a first-order transition. The G/C phase is stable at

0.66 < x < 0.85.

Surprisingly, at x = 0.85 we find a first-order transition

from the G/C to the F/C phase. The existence of this first-order

transition is in excellent agreement with the observed abrupt

drop in the mean magnetic moment at this concentration [23].

However, since the F component in the low-temperature Mn-

rich phase has not been previously identified, the existence of

the F/C phase is a prediction that needs to be verified experi-

mentally. The F/C and G/C phases at the Mn-rich end differ

essentially in the Fe ordering alone, as the ordering of the Mn

spins is almost purely C-type. The energy difference between

the F/C and G/C phases reaches about 20 meV per Fe atom

near x = 0.95; it is barely visible in Fig. 4 because of the

small Fe concentration.

The first-order transition from F/G to G at x ≈ 0.23 is also
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FIG. 1. Magnetic exchange parameters Jµν in the paramagnetic state corresponding to (F) ferromagnetic ordering, QF = 0; (G) G-type

ordering, QG = (1, 0, 1/2); (C) C-type ordering, QC = (1, 0, 0). Red circles: JFeFe(Q); blue diamonds: JMnMn(Q); black squares: JFeMn(Q).

FIG. 2. Same as in Fig. 1 but normalized by the concentrations: J̃µν(Q) = Jµν(Q)/(cµcν).

FIG. 3. (a) Accuracy of the fit at x = 0.26. (b) The magnetic energy

Emag (meV per Fe/Mn atom) in the F/G phase at x = 0.26. The global

minimum at (π/2, π/2) corresponds to the collinear G-type phase.

in excellent agreement with experiment, while the transition

from G to G/C occurs at a larger x compared to experiment,

where it is close to x = 0.5. Note, however, that our calcu-

lations are for systems with perfect 3d/5d ordering, while the

order parameter in the experimental samples for x = 0.5 and

x = 0.6 was 0.79 [23].

Fig. 5 shows the angles θFe, θMn in the ground states as a

function of x. (By convention, F and C amplitudes lie along

the z and G along the x axis; except for the F/C phase, where

F is along x.) As could be inferred from Fig. 1, the spin

moments of Fe and Mn are antiparallel in the F phase and

parallel in the G phase. First-order phase transitions appear

as discontinuous jumps of the angles. Note that in a wide

concentration range at the Mn-rich end the Fe spin moments

are almost perpendicular to the MnPt host in the ground state,

FIG. 4. Magnetic energies of different phases at zero temperature

(per Fe/Mn atom). Arrows show the boundaries between the F, F/G,

G, G/C, F/C, and C phases (in the order of increasing x).

while Mn ordering is almost pure C-type. (A full set of first-

principles calculations with interpolated lattice constants was

performed with a small 0.01 step in 0.94 < x < 1 range to

confirm this.) This feature highlights the importance of non-

Heisenberg terms in the magnetic energy.

We now turn to the full concentration-temperature phase

diagram. We have the fits for the magnetic energy

Emag(mFe,mMn), where the x and z components of mFe and

mMn correspond to the two Q vectors; in the collinear phase

one of these components vanishes. Emag is available for dis-

crete concentrations, and we use linear interpolation between

them. The entropy is approximated as S = (1 − x)S (mFe) +
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FIG. 5. Angles θν made by the spin moments of Fe and Mn with the

z axis at zero temperature. By convention, the G order parameter, as

well as the F order parameter in the F/C phase, are assumed to be

orthogonal to the z axis; all others are parallel to z.

xS (mMn), where S (m) is the entropy of a classical spin in a

Weiss field of such a magnitude that the magnetization is m.

This corresponds to the mean-field-like distribution function

pν(θ
′) ∝ exp(αν cos θ′), where θ′ is the angle with respect to

the direction of mν. Given that mFe,F = mFe cos θFe in the F/G

phase, etc., we minimize the free energy for each phase with

respect to four parameters θFe, θMn, αFe and αMn.

For a system with purely Heisenberg interaction this

scheme is identical to MFA applied to 2Q phases [7]. There-

fore, both second-order transitions to the paramagnetic phase

(where non-Heisenberg terms have no effect in MFA) and

ground-state properties (where only energy is important) are

correctly described by this approach. In the intermediate

temperature range our scheme can therefore be treated as a

thermodynamic interpolation. At such intermediate temper-

atures we are essentially assuming that the presence of non-

Heisenberg terms does not strongly change the distribution

functions and that our magnetic energy fits remain valid for

partially disordered 2Q phases. In most cases, these assump-

tions are likely consistent with the accuracy of the MFA it-

self. Significant improvement of the thermodynamic descrip-

tion could be reached by mapping the total energies to a mi-

croscopic spin Hamiltonian, but this expensive procedure is

beyond the scope of this paper.

Fig. 6 shows the MPD obtained both from the full magnetic

energy fits and from the same fits truncated at the quadratic

(Heisenberg) terms. First-order transitions are shown by

dashed lines. The overall structure of the phase diagram

agrees well with experiment. The first-order transition from

the F/G to the G phase may help explain the peculiarities

of the observed temperature-dependent magnetization peaks

[23]. Indeed, there is a concentration range from x = 0.23 to

x ≈ 0.28 where the ground-state G-type ordering turns into

F/G and then to F on heating. The physics is complicated by

configurational disorder, which may lead to the formation of

small Fe-rich clusters at elevated temperatures [23].

If only Heisenberg terms are kept in the magnetic energy,

the transitions into the paramagnetic phase remain unchanged.

However, all first-order transitions turn into second-order; the

F/G to G transition is shifted to much larger concentrations,

and the F/C phase disappears completely. Thus, in order to

describe the observed first-order transitions at x = 0.23 and

x = 0.85 it is important to take the non-Heisenberg interac-

tion terms into account. The F/C phase disorders at rather low

temperatures in our description, although its stability may be

underestimated in our thermodynamic scheme. The non-zero

magnetization in this phase should facilitate an easy experi-

mental verification of its existence.

FIG. 6. Magnetic phase diagram of Fe1−xMnxPt. Temperatures are

rescaled by the ratio Texp(x)/Tth(x), where T (x) = (1 − x)TC + xTN ;

TC and TN are the ordering temperatures of FePt and MnPt from Ref.

23 (exp) or theory (th). (MFA gives TC = 924 K and TN = 1670

K.) Thick (blue) lines: full fit for Emag. Thin (red) lines: same fit but

with non-Heisenberg terms set to zero. Solid (dashed) lines: second

(first) order phase transitions. Symbols: experimental data [23].

To conclude, we developed a computational tool based on

a combination of first-principles calculations that is capable

of describing a complicated c-T magnetic phase diagram of

a metallic alloy with competing interactions. Its application

to the Fe1−xMnxPt system produced a detailed interpretation

of the experimental phase diagram and also predicted the ex-

istence of a previously unknown low-temperature magnetic

phase on the Mn-rich end. The correct first-order transitions

and the Mn-rich phase are only captured if non-Heisenberg

terms are included in the magnetic energy, showing the limi-

tations of the conventional approach based on the Heisenberg-

model Hamiltonian. The wide applicability and predictive

power of this approach makes it useful for the design of mag-

netic materials with desired properties.
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