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The Wiedemann-Franz law, connecting the electronic thermal conductivity to the electrical con-
ductivity of a disordered metal, is generally found to be well satisfied even when electron-electron
(e-e) interactions are strong. In ultra-clean conductors in the hydrodynamic regime, however, large
deviations from the standard form of the law are expected, due to the fact that e-e interactions
affect the two conductivities in radically different ways. Thus, the standard Wiedemann-Franz ratio
between the thermal and the electric conductivity is reduced by a factor 1 + τ/τ eeth , where 1/τ is the
momentum relaxation rate, and τ eeth is the relaxation time of the thermal current due to e-e colli-
sions. Here we study the density and temperature dependence of 1/τ eeth of two-dimensional electron
liquids. We show that at low temperature 1/τ eeth is 8/5 of the quasiparticle decay rate: remarkably,
the same result is found in doped graphene and in conventional electron liquids in parabolic bands.

PACS numbers: 65.80.Ck,72.20.Pa,72.80.Vp

Introduction — Hydrodynamics [1] offers the natu-
ral framework to deal with thermal transport in clean,
strongly interacting many-particle systems. When a lo-
cal quasi-equilibrium state is established, a fluid can be
characterized by five slowly-varying time-dependent vari-
ables: the density n(r, t), the drift velocity v(r, t), and
the local temperature T (r, t). Their time evolution is de-
termined by the continuity equations for particle number
and energy density, and by the Navier-Stokes equation.
These equations in turn are controlled by a handful of
transport coefficients: the bulk and shear viscosities and
the thermal conductivity. Recently, it has been conjec-
tured [2] that this hydrodynamic regime of the electron
liquid can be realized in high-quality graphene, a mono-
layer of carbon atoms packed in a two-dimensional (2D)
honeycomb lattice [3, 4], in a broad range of temper-
atures and carrier densities. Recent experiments [5–7]
have reported measurements of the electronic thermal
conductivity of (suspended/supported) doped graphene.
Its order of magnitude is found to be comparable to the
extremely high phononic contribution [8], or even domi-
nant at sufficiently low temperature.

The electronic thermal current J (Q) is precisely de-
fined as the temperature T times the entropy current
carried by a high-mobility electron gas. Equivalently [9],
J (Q) = J (E) − µJ (N), where J (E) is the energy current,
J (N) is the particle current, and µ is the chemical poten-
tial. The thermal current is related to the gradient of the
temperature by the Fourier law J (Q) = −σth∇T at zero
particle current [9]. Here σth is the thermal conductivity.

The electronic thermal and charge (σc) d.c. conductiv-
ities of an electron gas in the diffusive regime [9, 10] are
connected by the Wiedemann-Franz (WF) law [11, 12],

σth
σcT

=
π2k2B
3e2

≡ L0 , (1)

where L0 – the so-called “Lorenz number” – is a univer-
sal constant, independent of material parameters. This
elegant statement reflects the fact that a single set of car-

riers (electrons) transports both the charge and the ther-
mal energy, and that the scattering mechanism (mainly
electron-impurity scattering at low temperature) affects
in the same way both thermal and charge conductivities.
The standard derivation of the WF law [9, 13] ignores
electron-electron (e-e) interactions, which can, in princi-
ple, change the value of the WF ratio by affecting the two
conductivities in different ways. At a finite frequency ω,
the conductivities can be expressed as

σ`(ω) =
Q`D`

−iω + 1/τ`
, (2)

where ` = c for the charge conductivity, ` = th for the
thermal conductivity, Qc = e2 and Qth = π2k2BT/3. Here
τc and τth are the relaxation times of charge and thermal
currents respectively, and Dc and Dth are the correspond-
ing “Drude weights”. Electron-electron interactions can
modify the WF ratio by creating a difference between
(i) the relaxation times τc and τth and/or (ii) the Drude
weights. In general, the “amended” WF relation follows
immediately from Eq. (2), and reads

σth
σcT

=
π2k2B
3e2

Dth

Dc

τth
τc
≡ L . (3)

In the diffusive regime [14–19], τth and τc are nearly
identical and controlled by momentum-non-conserving
processes. This, combined with the absence of any renor-
malization of the Drude weights [14, 15] (see, however,
below) led to the conclusion that the WF law remains
valid also in the presence of e-e interactions.

In the hydrodynamic regime, which, by definition, is
the regime in which the e-e scattering time is much
shorter than the electron-impurity or electron-phonon
scattering times [20], a large difference can appear be-
tween the charge-current and thermal-current relaxation
times, with the former being much larger than the lat-
ter. This happens because charge currents can be relaxed
only by momentum-non-conserving processes, while the
thermal relaxation rate also has a contribution from e-e
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interactions (hereafter called τ eeth ). [23–25] Thus, if τ is
the momentum relaxation time, 1/τc = 1/τ and 1/τth =
1/τ + 1/τ eeth � 1/τc. Below we prove that τ eeth equals,
at low temperature, 5/8 of the quasiparticle lifetime τ eeqp.
Since the latter is always finite, we conclude that the WF
ratio, renormalized by τth/τc ' (1 + τ/τ eeth )−1, can be-
come arbitrarily small in the hydrodynamic limit. Even if
the hydrodynamic regime is not fully established, the ex-
istence of two comparable relaxation rates 1/τ and 1/τ eeth
will lead to significant and observable deviations from
the standard WF law. Further, the thermal conductivity
is predicted to have a broad maximum as a function of
temperature when τ eeth ' τ (see Fig. 3): observation of
this maximum will provide unequivocal confirmation of
our theory.

Perhaps the most surprising outcome of our study is
the realization that the violation of the WF law does not
depend on the details of the quasiparticle energy disper-
sion: it is a universal feature of the hydrodynamic regime
of Fermi liquids. For an ordinary Galilean-invariant elec-
tron gas, the difference between the relaxation time of
the charge current and that of the the thermal current
arises trivially from the fact that the latter is affected
by electron-electron collisions, while the former is not,
due to momentum conservation. For electrons in doped
graphene the reasoning is more subtle but equally com-
pelling. Indeed, as shown in Ref. [2], at low tempera-
ture the particle current J (N) is essentially carried by
the quasiparticles around the Fermi surface which have
momentum of magnitude |k| ∼ kF, with small variations
of order T . To the extent that variations in the magni-
tude of k can be neglected, the velocity of a quasiparticle,
v ∝ k/|k|, can be approximated as k/kF , which is sim-
ply proportional to its momentum k. This implies that
the total particle current (alias charge current) can be
split into two components: [21] a larger one proportional
to the total momentum, and a smaller one proportional
to the temperature T . While the former is conserved in
electron-electron collisions, the latter is not. This means
that the second component is relaxed by electron-electron
interactions and, in absence of a driving field, decays to
zero over time. (Note that the non-conservation of the
particle current does not contradict the conservation of
the particle number, which is of course satisfied.) The
conserved component of the particle current dominates at
low temperature, and the charge conductivity is therefore
infinite [2, 10]. Contrary to J (N), the energy current J (E)

of a system with linear energy dispersion is proportional
to the momentum, and therefore it is strictly conserved in
e-e collisions. Thus, the conductivity associated with en-
ergy currents would diverge. However, the thermal cur-
rent is not J (E) but J (E)−µJ (N), and we find that J (E)

exactly cancels the conserved part of µJ (N). What sur-
vives is the relatively small part of µJ (N) that is not con-
served (and can be relaxed) by e-e collisions. [21] Thus,
the thermal current is fully susceptible to decay from

electron-electron interactions in doped graphene, and the
associated conductivity σth is therefore finite [22]. The
only difference between doped graphene and the 2DEG is
that in the former the collisions affect J (N), while in the
latter they affect J (E): the net result for the thermal cur-
rent is the same [21]. In what follows we apply the theory
to doped graphene [3, 4], which appears to be particularly
promising for the realization and detection of the hydro-
dynamic regime [2]. However, we emphasize that our
results are also valid for Galilean-invariant 2DEGs [28].
The difference between quasiparticle scattering rates in
2DEGs and in graphene does cause quantitative changes
in the quasiparticle lifetime τ eeqp: nonetheless the low-
temperature relation τ eeth = 5τ eeqp/8 is dictated by angular
symmetry and remains the same in both cases.

Model and calculations – Particles in graphene are de-
scribed by the massless Dirac fermion (MDF) Hamilto-
nian (for each of the Nf = 4 spin and valley flavors –
hereafter ~ = 1) [3, 4]

Ĥ =
∑
k,λ

εk,λψ̂
†
k,λψ̂k,λ +

1

2

∑
q

vq(n̂qn̂−q − n̂0) , (4)

where ψk,λ (ψ†k,λ) destroys (creates) a particle with mo-
mentum k in band λ = ±, εk,λ = λvFk is the band
energy, and vF is the Fermi velocity. vq = (2πe2)/(εq) is
the non-relativistic Coulomb interaction, ε is the dielec-
tric constant of the environment, and n̂q is the density
operator. The Fermi energy is εF = ±~vFkF (+ for elec-
trons, − for holes), where kF =

√
4πn/Nf is the Fermi

wavevector, and n is the excess carrier density. Owing
to the particle-hole symmetry of the model, we consider
exclusively n-type doping.

Within the linear-response regime, the thermal con-
ductivity is defined in terms of the thermal-current linear
response function χ

J
(Q)
α J

(Q)
β

(q, ω) as

σth = lim
ω→0

[
i

ωT
χ
J

(Q)
α J

(Q)
α

(q = 0, ω)

]
, (5)

where α, β = x, y. The calculation of σth closely parallels
that of the charge conductivity performed in Ref. [2].
Therefore, in what follows we briefly summarize the main
conceptual steps, and we provide more technical details
in the Supplemental Online Material.

Fig. 1 summarizes the diagrammatic calculation of
χ
J

(Q)
α J

(Q)
β

(q, ω), given by the diagram of Fig. 1a). Dou-

ble solid lines represent Green’s functions dressed by the
“GW” self-energy insertions of Fig. 1b). The bare cur-
rent vertex [solid dot in Fig. 1a)] is [14–19]

Λ
(0)
λλ′(k−, iεn,k+, iεn+ iωm) = (εn+ωm/2)Jλλ

′

k−,k+
, (6)

where εn and ωm are, respectively, fermionic and bosonic
Matsubara frequencies [10], k± = k±q/2, and Jλλ

′

k−,k+
is

the matrix element of the number-current operator [21].



3

FIG. 1: Panel a) represents the thermal-current linear re-

sponse function. The solid dot is the bare vertex Λ(0), Λ is
the dressed vertex, and double solid lines stand for Green’s
functions dressed by the self-energy of panel b). The choice of
the GW self-energy and the requirement of fulfilling the Ward
identities uniquely determine the irreducible interaction I and
the self-consistent Bethe-Salpeter equation [panel c)]. [10]

The dressed current vertex Λ, represented as a trian-
gle in Fig. 1, is determined by solving the self-consistent
Bethe-Salpeter equation of Fig. 1c). After the analytical
continuation to real frequencies [2], we retain only the
terms of χ

J
(Q)
α J

(Q)
β

(q, ω) which contain the product of an

advanced and a retarded Green’s function (schematically
GAGR). In the limit vFq � ω, 1/τ eeqp � εF we approx-

imate [2] G
(A)
λ G

(R)
λ′ → −2iδλ=λ′=+=mG(R)

+ /(ω + i/τ eeqp).
In so doing we neglect the incoherent part of the Green’s
function [10]. Herein lies our Fermi-liquid approximation.

At the non-interacting level σ
(0)
th (ω) =

π2k2BTD
(0)
th /[3(−iω + 0+)], where D(0)

th = NfεF/(4π~2)
is the non-interacting thermal Drude weight. The
effect of e-e interactions is twofold. On one hand,
self-energy corrections lead to the replacement of the
infinitesimal 0+ by the finite 1/τ eeqp. On the other

hand, σ
(0)
th (ω) gets also multiplied by the vertex cor-

rection γ(ω) = (ω + i/τ eeqp)/(ω + i/τ eeth ), obtained
by solving the equation of Fig. 1c) with the ansatz

Λ++(k, ε+ + ω,k, ε−) = γ(ω)Λ
(0)
++(k, ε+ + ω,k, ε−) in

the limit ω, 1/τ eeqp � εF and to first order in ε. Here [21]
τ eeth = 5τ eeqp/8. Therefore,

σth(ω) =
π2k2BT

3

D(0)
th

−iω + 8/(5τ eeqp)
, (7)

Notice that the Drude weight remains unrenormalized at
this level of approximation. At low temperature [30, 31]

1

τ eeqp
→ 4

3

π

Nf

(kBT )2

εF
ln

(
ζ
kBT

εF

)
, (8)

with ζ = π/
√

5. [2, 21]. A similar logarithmic reduction
of the thermal conductivity was found in Ref. [28] for the
case of a Galilean-invariant 2DEG. Note that, at low tem-
perature, τ eeqp is independent of the e-e coupling constant
αee [Eq. (8)]. In this regime, the dominant contribution
to τ eeqp is due to the collinear scattering of quasiparticles,
whose phase space diverges [32]. The same phase-space
divergence, however, strongly enhances the screening of
e-e interactions [33] (the effective interaction is therefore
independent of the coupling constant). The two effect
cancel, and, to the leading non-vanishing order, 1/τ eeqp
shows only a weak (logarithmic) enhancement.

Thermal conductivity – In Fig. 2 we plot the interacting
WF ratio L [Eq. (3)], in units of L0 [Eq. (1)] as a function
of the carrier density at a fixed temperature T = 300 K
[panel a)], and as a function of temperature for a fixed
carrier density n = 1012 cm−2 [panel b)], corresponding
to a Fermi temperature TF ∼ 1, 300 K. The momentum
relaxation time τ is set to reproduce the electron mobility
µe = 10, 000 cm2/(Vs). Even though this value is typical
of samples close to the diffusive regime (τ . τ eeth ), the
renormalization of the WF ratio is still remarkable.

In Fig. 3 we show the thermal conductivity of graphene
as a function of the temperature for different values of
the carrier density. Its downturn marks the onset of
the hydrodynamic regime of the electron liquid. Indeed
σth = L0σcT/(1+τ/τ eeth ), and 1/τ eeth grows as T 2 ln(T ) for
kBT � εF. The initial linear-in-T (diffusive) behavior is
replaced, as the temperature increases, by a slowly de-
creasing function of T . The position of the maximum of
σth can be determined from the analytical approximation
of our formulas and it is found, for any given density, as
the point where the dashed line intercepts the solid lines.

The renormalization of the thermal Drude weight – The
collisionless kinetic equation for the distribution function
of quasiparticles in the presence of a small temperature
gradient that oscillates in time and space with a fre-
quency ω and wavevector q is [10, 26, 34]

(q ·v?k−ω)n1,k−n′0(ξ?k)v?k ·

[
q
∑
k′

fk,k′n1,k′+ξ
?
k

∇T

T

]
= 0

(9)
where n1,k ≡ n1,k(q, ω) is the non-equilibrium correc-
tion to the distribution function, ξ?k is the quasipar-
ticle energy measured from the chemical potential µ?

and v?k = ∇kξ
?
k is the quasiparticle velocity. fk,k′ is

the Landau interaction function [10], while n′0(ξ?k) is the
derivative of the Fermi distribution function with respect
to ξ?k. To O(q2/ω2), Eq. (9) is solved by the Ansatz
n1,k(q, ω) = −n′0(ξ?k)Ak(q, ω)ξ?k, where Ak(q, ω) is to
be determined. The first term in the square brackets of
Eq. (9) vanishes at order T 2, due to the cancellation of
contributions from opposite sides of the Fermi surface
(the ξ?k factor is antisymmetric). [10, 21, 26] Therefore,
Ak(q, ω) = (q · v?k)(v?k ·∇T )/(ω2T ). The induced varia-
tion of the entropy is [35] δS(q, ω) =

∑
k n1,kξ

?
k/(kBT ).
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FIG. 2: (Color online) Panel a) the renormalized WF ratio
L, as defined in Eq. (3), in units of L0 [Eq. (1)], plotted as a
function of the density n (in units of 1012 cm−2). We fixed
the temperature T = 300 K, the ratio Dth/Dc = 1, and the
momentum relaxation time τ to reproduce the electron mobil-
ity µe = 10, 000 cm2/(Vs). We show three curves for different
values of the dimensionless coupling constant of e-e interac-
tions, i.e. αee = 0.5 (solid line), αee = 0.9 (short-dashed line),
and αee = 2.2 (long-dashed line). Panel b) same as in panel
a) but shown as a function of temperature (in units of K)
and for a fixed excess carrier density n = 1012 cm−2 (corre-
sponding to a Fermi temperature TF ∼ 1, 300 K). The weak
αee-dependence of the curves is due to subleading corrections
to τ eeqp beyond the leading order of Eq. (8).

Since δS(q, ω) = (π2k2BT/3)Dthq
2/ω2 we find Dth =

NfkFv
?
F/(4π~). Many-body effects enter only through

the renormalized Fermi velocity v?F. On the contrary [27,
36], Dc = NfkFv

?
F(1 + F s

1)/(4π~), where F s
1 is the first

spin-symmetric Landau parameter [10]. Thus, at odds
with [14, 15], the WF ratio is further renormalized by
a factor Dth/Dc = (1 + F s

1)−1. In both 2DEG and
graphene, 1 + F s

1 ∼ 1 in a broad range of values of the
strength of e-e interactions [10, 27]. This leaves τth/τc as
the main factor controlling the value of the WF ratio.

Summary and conclusions — According to the
Wiedemann-Franz law the charge (σc) and thermal (σth)
conductivities of a Fermi liquid satisfy the relation σth =
L0Tσc, where the Lorenz number L0 = π2k2B/(3e

2). E-e
interactions, affecting in different ways the two conduc-
tivities, can dramatically change the value of the WF
ratio. In Ref. [2] we showed that at low temperature
they do not contribute to the relaxation of charge cur-
rents. Therefore σc diverges as the momentum relaxation
time τ → ∞. On the contrary, the thermal conductiv-
ity – Eq. (7) – is always finite as long as T 6= 0. This
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σ
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FIG. 3: (Color online) The thermal conductivity of graphene
as a function of the temperature for three different values
of the carrier density (n = 1, 4 and 7 × 1011 cm−2). Here
αee = 0.5, while τ is chosen to reproduce an electron mobil-
ity of µe = 250, 000 cm2/(Vs). A broad maximum (tracked
by the dotted line) occurs when τ eeth , with increasing tempera-
ture, becomes smaller than τ . This maximum marks the onset
of the hydrodynamic regime: its observation will provide un-
equivocal confirmation of our theory. A further rise of σth at
higher temperature due to electron-phonon interactions [38]
is not included here.

result manifestly violates the WF law: the WF ratio is
renormalized by a factor R = (1 + τ/τ eeth )−1.

Even though the violation of the WF law is a universal
feature of the hydrodynamic regime of the electron liq-
uid, we applied our theory to doped graphene, which is
particularly promising for the realization of this regime.
For micrometer-sized samples and typical doping concen-
trations, hydrodynamics is expected to be applicable in
a temperature window between 50 K and 300 K. [2] We
showed that R is quite small even for samples close to
the diffusive regime. For example, for an electron den-
sity n ∼ 1012 cm−2, a mobility µe ∼ 10, 000 cm2/(Vs),
and T = 300 K, R ∼ 1/2. In high-quality sheets, which
reach mobilities of the order of ∼ 105 − 106 cm2/(Vs),
the violation is expected to be much stronger.

The factor R is a decreasing function of the temper-
ature. Therefore σth = TRL0σc, for finite τ , is a non-
monotonic function of T – Fig 3. At low temperature,
where the WF law is applicable, it is a linear function
of T . As T increases, τ eeth . τ and σth starts decreas-
ing with the temperature. Eventually, electron-phonon
interactions reverse this behavior [38]. Thus σth shows a
minimum, which can be experimentally tested and con-
stitutes the smoking gun of the hydrodynamic thermal
conduction.

Acknowledgments — This work was supported in part
by DOE grant DE-FG02-05ER46203 and by a Research
Board Grant at the University of Missouri.

∗ Electronic address: principia@missouri.edu
[1] L.D. Landau and E.M. Lifshitz, Fluid Mechanics (Perg-

mailto:principia@missouri.edu


5

amon Press, Oxford, 1987).
[2] A. Principi and G. Vignale, Phys. Rev. B 91, 205423

(2015).
[3] A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S.

Novoselov, and A.K. Geim, Rev. Mod. Phys. 81, 109
(2009).

[4] V.N. Kotov, B. Uchoa, V.M. Pereira, F. Guinea, and
A.H. Castro Neto, Rev. Mod. Phys. 84, 1067 (2012).
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