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We predict theoretically the existence of the anomalous Hall effect when a tunneling current
flows through a tunnel junction in which only one of the electrodes is magnetic. The interfacial
spin-orbit coupling present in the barrier region induces a spin-dependent momentum filtering in
the directions perpendicular to the tunneling current, resulting in a skew-tunneling even in the
absence of impurities. This produces an anomalous Hall conductance and spin Hall currents in
the nonmagnetic electrode when a bias voltage is applied across the tunneling heterojunction. If
the barrier is composed of a noncentrosymmetric material, the anomalous Hall conductance and
spin Hall currents become anisotropic with respect to both the magnetization and crystallographic
directions, allowing to separate this interfacial phenomenon from the bulk anomalous and spin Hall
contributions. The proposed effect should be useful for proving and quantifying the interfacial
spin-orbit fields in metallic and metal/semiconductor systems.

PACS numbers: 73.43.Jn,71.70.Ej,72.25.Mk,73.50.Jt

The anomalous Hall effect (AHE) occurs in solids as
the result of the interplay between spin-orbit coupling
(SOC) and magnetism [1]. Although this fascinating phe-
nomenon has been investigated for more than a century,
its complexity and rich phenomenology continue to at-
tract the attention of many researchers. The topic has
been extensively discussed in various reviews [2–5].

Most of the investigations of the AHE have been fo-
cused on the case of lateral transport in magnetic crys-
tals and films. However, recent theoretical investigations
explored the possible existence of anomalous Hall cur-
rents due to the side-jump and skew-scattering of spin-
polarized electrons on impurities located in the insulating
barrier of a ferromagnet/insulator/ferromagnet magnetic
tunnel junction (MTJ) [6]. In this paper we propose
an effect which does not rely on scattering on impuri-
ties but on the interfacial SOC resulting from the lack
of inversion symmetry of the MTJ. The effect can be
used for experimentally proving and quantifying the in-
terfacial SOC in metallic and metal/semiconductor sys-
tems. This is of particular relevance because the in-
terfacial SOC is crucial for various modern phenomena
in solids, e.g., anisotropies in optical [7] and magneto-
transport phenomena such as the tunneling anisotropic
magnetoresistance (TAMR) effect [8–15], as well as for
the formation of Majorana fermions in ferromagnetic-
atomic-chains/superconductor systems [16]. The inter-
facial SOC has also been proposed for controlling ther-
moelectric anisotropies in magnetic [17] and helimagnetic
[18] tunnel junctions and for generating SOC-induced
spin transfer torque in ferromagnet/normal-metal [19]
and in topological-insulator/ferromagnet structures [20].

We show theoretically that, when a current flows
through a MTJ with a single ferromagnetic electrode,
finite anomalous Hall conductances develop in the non-
magnetic counterelectrode, even in the absence of impu-
rities. Since this effect originates from the skew tunneling

FIG. 1. (Color on line). (a) Schematic of a ferromag-
net/semiconductor/normal metal tunnel junction. The tun-
neling current flowing in the z-direction generates the anoma-
lous Hall voltage (VH) in the nonmagnetic electrode. (b) Side
view of (a). Taking the [110]-axis as a reference, the magne-
tization direction (m) and the direction along which the Hall
voltage is measured (t) are determined by the angles ϕ and
φ, respectively.

[21] of the spin polarized carriers through a potential bar-
rier, we refer to it as the tunneling anomalous Hall effect
(TAHE). Similarly, transverse spin currents in the non-
magnetic region originate as a response to a bias applied
across the MTJ. Because of its analogy with the spin Hall
effect [22, 23], we refer to this phenomenon emerging in
MTJ as the tunneling spin Hall effect (TSHE).

We consider a MTJ grown in the ẑ ‖ [001] direction
and composed of a ferromagnetic electrode separated by
a tunneling barrier from a nonmagnetic counterelectrode
(see Fig. 1). The tunneling barrier may refer to the
presence of an insulator or undoped semiconductor as
a spacer between the ferromagnetic and normal metal
regions or just to a Schotky barrier formed at the inter-
face between a ferromagnet and an n-doped semiconduc-
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tor. The model Hamiltonian describing the heterojunc-
tion reads as [24],

H = −~2

2
∇ 1

m(z)
∇+V (z)−∆ex

2
Θ(−z)m ·σ+Hso. (1)

Here m(z) is z-dependent effective mass of the carriers,
V (z) is the potential of the rectangular tunneling barrier,
∆ex is the exchange energy in the ferromagnet, and Θ(z)
is the Heaviside step function, respectively. The compo-
nents of σ are the Pauli matrices and m = (cosϕ, sinϕ, 0)
indicates the magnetization direction.

The lack of inversion symmetry of the structure in-
duces a Bychkov-Rashba (BR) SOC [25]. If the material
forming the barrier exhibits bulk inversion asymmetry, an
additional contribution of Dresselhaus (D) type appears
in the SOC [26]. To capture these effects, we include in
Eq. (1) the effective SOC Hamiltonian, Hso = HR +HD,
where,

HR = α (kyσx − kxσy) δ(z), (2)

is the interfacial BR SOC [27, 28],

HD = − (kyσx + kxσy) ∂zγ∂z, (3)

contains both the bulk-like and interfacial D SOCs
[24, 27], and δ(z) is the Dirac-delta function. The D pa-
rameter γ is piecewise constant, being finite in the semi-
conducting barrier and zero elsewhere.

The wave function of the system can be written as,

Ψj
iσ(r) = eik‖·r‖Φjiσ(z)/

√
Az, (4)

where Az is the transverse area and Φjiσ(z) represent the
scattering states propagating along the z-direction. The
subindex i = l, c, r labels the region (left, center, or right)
and σ =↑, ↓ refers to the spin of the incident particle. The
superindex (j = l, r) indicates whether the particle comes
from the left (ferromagnetic electrode) and propagates
to the right (non magnetic electrode) or viceversa. The
scattering states, Φjiσ(z), can be computed in a similar
way as in Refs. [24, 27].

The charge current density flowing along the transverse
direction η (η = x, y) in the nonmagnetic electrode is
determined by [29]

Jη =
∑
σ

(
J l→rησ + Jr→lησ

)
, (5)

where J i→jησ denotes the current contribution of the spin-
σ modes propagating from the ith to the jth electrode.
Note that since the interfacial SOC is only present in the
barrier region, the velocity operator in the nonmagnetic
electrode is simply given by vη = pη/m = −(i~/m)∂η.

For low temperatures and small bias voltage, Vz, taking
the Fermi energy as the zero of the energy scale, the

conductance, Gηz = Iη/Vz, reduces to [29],

Gηz = − AηG0

2(2π)2

∑
σ

∫
dk‖kη

(
|tσσ|2 + |tσ,−σ|2

kσ

)∣∣∣∣
E=0

,

(6)
where Aη is the cross sectional area through which the
current Iη = JηAη flows, G0 = 2e2/h is the quantum

of conductance, kσ =
√
k2
Fσ − k

2
‖, and κ =

√
κ2
F
− k2
‖

are, respectively, the wavevector components in the fer-
romagnetic and non magnetic electrodes at the Fermi
energy, k

Fσ denotes the Fermi wavevector corresponding
to the spin σ channel in the ferromagnet, and κ

F
is the

Fermi wavevector of the nonmagnetic electrode. The co-
efficient tσ,σ (tσ,−σ) depends on the interfacial SOC [29]
and describes the process of an incident spin-σ particle
being transmitted with conserved (flipped) spin orienta-
tion. The tunneling (Gzz) and TAHE conductances (Gxz
and Gyz) can be computed by using Eq. (6).

The current and voltages in the nonmagnetic elec-
trode are related as Iη = GηµVµ. The lack of mag-
netism in this region of the heterostructure implies that
Gxy = Gyx = 0. Furthermore, assuming a cubic material
for the nonmagnetic electrode yields Gxx = Gyy = G⊥.
The resistances Rηµ can be found by inverting the con-
ductance. Under open circuit conditions in the x and y
directions (i.e., Ix = Iy = 0) and taking into account that
the diagonal components of the conductance are much
larger than the off-diagonal ones we obtain the follow-
ing approximate relations for the TAHE resistances and
voltages [29],

Rηz ≈ Gηz/ (G⊥Gzz) ; Vη ≈ −GηzVz/G⊥ , (7)

with η = x, y. In what follows we consider, for the sake of
simplicity, a sample with equal tunneling and Hall con-
tact areas (i.e., Ax = Ay = Az = A).

For illustration we performed numerical calculations
for an Fe/GaAs/Au tunnel junction with the same sys-
tem parameters as in Refs. [9, 24, 27]. Two differ-

ent values of the BR parameter, α = −0.6 eVÅ
2

and

α = −17.4 eVÅ
2

were considered. These values were
extracted from the experimental data of the TAMR mea-
sured in an Fe/GaAs/Au tunnel junction at bias voltages
of 50 mV and 90 mV, respectively [9].

The results are shown in Fig. 2, where the TAHE con-
ductance ratios Gxz/Gzz and Gyz/Gzz along the x ‖
[110] and y ‖ [1̄10] axes, respectively, are displayed as
functions of the magnetization direction. The tunneling
Hall conductance Gxz (Gyz) exhibits a sine-type (cosine-
type) dependence on the magnetization orientation in-
dicating that the TAHE is of first order in the SOC
strength. This contrasts with the TAMR effect, which
is of second order in SOC [24, 30]. The small values
of the TAMR (less than 1%) measured in Fe/GaAs/Au
MTJs [9] indicate that the anisotropic contribution to
the tunneling conductance Gzz can be neglected. In fact
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FIG. 2. (Color on line). Dependence of the TAHE conduc-
tance ratios, Gxz/Gzz [(a), (c)] and Gyz/Gzz [(b), (d)], on
the magnetization direction for different values of the BR pa-
rameter (α) and barrier thickness (d).

the cos(2ϕ)-type dependence of Gzz is so small that it
can not be seen on the scale of Fig. 2. The magnetiza-
tion orientation dependence of the TAHE conductances
is a manifestation of the magnetoanisotropic effects while
the different amplitudes of Gxz and Gyz reflects the crys-
talline magnetoanisotropy of the system.

We can estimate the amplitudes of the TAHE re-
sistances by using Eq. (7). The conductance G⊥ de-
scribes the response of the gold region to an applied
transverse voltage and is not related to tunneling. It
can therefore be estimated as G⊥ = σ

Au
A/L, where

σ
Au

= 4.1× 105 Ω−1 cm−1 is the conductivity of gold at
room temperature. Assuming a lateral size L = 10 µm
and taking into account that the amplitudes of both
Gxz/Gzz and Gyz/Gzz are of the order of 10−3 (see
Fig. 2) we obtain TAHE resistances of about 2.5 µΩ and
TAHE voltages of 0.25 nV for a typical tunneling current
of the order of 100 µA.

In order to get more insight on the physical origin
of the TAHE, it is convenient to analyze the limit case
of a very thin barrier. In such a case the barrier po-
tential together with the SOC can be interpreted as an
effective, spin and momentum-dependent potential, i.e.,
Veff = hδ(z), where the height of the effective barrier is
given by,

h = V0d+(w ·σ) = V0d+(α−β)kyσx−(α+β)kxσy, (8)

where β represents the effective parameter of the lin-
earized D SOC. One can see from Eq. (8) that the SOC
affects the tunneling by modifying the height (h) of the
effective barrier according to the in-plane momentum and
spin orientation of the incident particle. This, together
with the existence of spin polarization in the ferromag-
netic lead, creates an imbalance between transmitted par-
ticles with in-plane momenta −k‖ and k‖ and results in fi-
nite TAHE currents in the nonmagnetic counterelectrode.

The spin-dependent momentum filtering is schematically
shown in Fig. 3, where, for the sake of simplicity, we
consider the tunneling of particles with ky = 0 through
a barrier with BR SOC only. This mechanism resem-
bles the conventional skew scattering of spin polarized
carriers on impurities [21]. However, unlike the conven-
tional skew scattering, the tunneling skew scattering does
not depend on the transport lifetime [31]. By situating
the transverse Hall contacts within a distance from the
barrier smaller than the electron mean free path (few
hundred nanometers for metals such as Cu, Au, Al at
low temperature [32]), the TAHE offers a unique oppor-
tunity for the experimental investigation of the intrinsic
character of the tunneling skew scattering [33].

The strength of the Dirac-delta barrier can be char-
acterized by the parameter Q = 2m0V0d/~2. In the
high-barrier limit Q dominates over the Fermi momenta
(i.e., Q � k

Fσ
and Q � κ

F
) and over the SOC at

the Fermi wavevectors (i.e., Q � 2m0|w(k
Fσ

)|/~2 and
Q � 2m0|w(κ

F
)|/~2). In such a limit the Hall conduc-

tances can be approximated by the following analytical
expressions,

Gηz ≈ ∓
2G0

π

A
(
k5
F↑
− k5

F↓

)
15Q3

(λα ± λβ)

{
sinϕ
cosϕ

, (9)

with η = x, y. In the equation above we have introduced
the dimensionless SOC parameters, λα = 2m0α/~2 and
λβ = 2m0β/~2.

From Eq. (9) one can conclude that, as in the con-
ventional AHE, the TAHE conductance vanishes in the
absence of spin polarization (i.e., when k

F↑ = k
F↓). Fur-

thermore, these simplified analytical expressions properly
describe the magnetization orientation dependence of the
numerically calculated TAHE conductances (see Fig. 2).

According to Eq. (9), the TAHE conductance along
the in-plane direction t = (cosφ, sinφ, 0) (see Fig. 1) is
given by,

Gtz ≈
2G0

π

A
(
k5
F↑
− k5

F↓

)
15Q3

[λα sin(φ− ϕ)− λβ sin(φ+ ϕ)] .

(10)

The BR SOC does not contain information about the
orientation of the in-plane crystallographic axes, since it
is invariant under rotations around the [001] axis. Conse-
quently, in the absence of the D SOC (i.e., when λβ = 0),
the TAHE conductance exhibits a magnetoanisotropic
behavior, i.e., it depends on both the direction along
which it is measured and the magnetization direction but
only through their relative angle, φ− ϕ [see Eq. (10)].

Unlike the BR, the D SOC is not invariant under rota-
tions around the [001] axis. Therefore, when λβ 6= 0,
the TAHE conductance acquires a crystalline magne-
toanisotropic character, i.e., it depends on both the mag-
netization orientation and the crystallographic direction
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FIG. 3. (Color on line). Spin-dependent momentum filter-
ing resulting from tunneling through a barrier with BR SOC
characterized by the parameter α > 0. Particles propagate
from the ferromagnetic (left) electrode into the nonmagnetic
(right) region. For ky = 0 and m||y the height of the effec-
tive, spin-dependent potential barrier is h = V0d− σαkx [see
Eq. (8)] with σ = 1 (σ = −1) for an incident particle with
spin parallel (antiparallel) to the magnetization. Therefore,
for the majority channel (σ = 1) the transmission of particles
with kx > 0 is favored, as schematically shown in (a). The
momentum imbalance in the transmitted states generates a
transverse current. For the minority channel (b) the situation
is opposite. However, due to the presence of spin polarization,
the contribution of the majority channel dominates. The re-
sult is a finite TAHE current in the x-direction, Jx < 0 (and
a finite TAHE conductance, Gxz = JxAx/Vz). The situation
for α < 0 is analogue but the TAHE current flow is reversed,
i.e., Jx > 0.

along which it is measured. In contrast to the conven-
tional isotropic AHE conductance, the TAHE conduc-
tance measured along the magnetization direction (i.e.,
when φ = ϕ) remains, in general, finite. This is a peculiar
signature of the crystalline magnetoanisotropy induced
by the D SOC.

By aligning the magnetization along the [010] direc-
tion (i.e., ϕ = π/4) and combining Eqs. (7) and (9) one
obtains,

λα
λβ

=
Gxz −Gyz
Gxz +Gyz

=
Vx − Vy
Vx + Vy

. (11)

Thus, the measurement of the TAHE voltages Vx and Vy
could be used as a tool for the experimental determina-
tion of the ratio α/β, which although previously mea-
sured in quantum wells [34] and quantum wires [35] has
not yet been measured in tunneling systems.

Apart from the TAHE, the spin-dependent momentum
filtering generates also a transverse spin current in the
nonmagnetic electrode. The tunneling spin Hall current

(in units of ~/2e) corresponding to the spin component
along the magnetization direction (m) and propagating
in the nonmagnetic electrode along the η -direction is
given by

Jm
η =

∑
σ

σ
(
J lησ + Jrησ

)
, (12)

The calculation of the tunneling spin Hall and TAHE cur-
rents is quite similar and we omit further computational
details.

The tunneling spin Hall currents computed with the
square-barrier model exhibit the same angular depen-
dences as the AHE conductances (see Fig. 2) but with
amplitudes varying from few A/cm2 for an 8 nm thick
barrier to 104 A/cm2 for d = 4 nm. In the limit of
a Dirac-delta barrier, the following approximate expres-
sions for the spin Hall currents were found,

Jm
η ≈ ∓

2G0V

π

(
k5
F↑

+ k5
F↓

)
15Q3

(λα ± λβ)

{
sinϕ
cosϕ

, (13)

where η = x, y. From the equations above, one can see
that unlike the AHE conductances, the spin Hall currents
remain finite even in the absence of magnetization (i.e.,
when k

F↑ = k
F↓).

Note that in our analysis we have not considered the
effect of the atomic SOC present in the nonmagnetic elec-
trode. While it should not play a significant role for the
TAHE (there is no magnetization in the nonmagnetic
electrode), it may produce additional contributions to the
TSHE due to conventional spin Hall effect (SHE). Thus,
the use of a nonmagnetic electrode with small SOC would
be experimentally preferred for the measurement of the
TSHE. Nevertheless, even if both the TSHE and SHE are
present, their contributions can be experimentally dis-
tinguished by using their different scaling with system
parameters or by analyzing the anisotropy of the signal
with respect to different, transverse crystallographic di-
rections.

In summary, we have theoretically shown that the pres-
ence of interfacial SOC in tunnel junctions produces an
imbalanced spin-dependent momentum filtering in the
directions perpendicular to the tunneling current when
one of the electrodes is magnetic. As a result both
anomalous Hall voltages and spin Hall currents develop
in the other electrode even when within its region, mag-
netism, impurities, and SOC are absent. This pro-
posed phenomenon should be also important to prove and
quantify the interfacial spin-orbit fields in metallic and
metal/semiconductor systems which are vital to many
modern phenomena in solids.
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