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We have carried out density-matrix-renormalization group (DMRG) calculations for the problem
of one doped hole in a two-leg t − J ladder. Recent studies have concluded that exotic “Mott”
physics — arising from the projection onto the space of no double-occupied sites — is manifest in
this model system, leading to charge localization and a new mechanism for charge modulation. In
contrast, we show that there is no localization and that the charge density modulation arises when
the minimum in the quasiparticle dispersion moves away from π. Although singular changes in the
quasiparticle dispersion do occur as a function of model parameters, all the DMRG results can be
qualitatively understood from a non-interacting “band-structure” perspective.

A strongly correlated quantum system is one in which
the interactions are at least comparable to the kinetic
energy, so weak-coupling perturbative approaches can-
not be justified. However, a key question is – under what
circumstances does the behavior of such systems extrap-
olate smoothly to the weakly interacting limit so that,
at least at the phenomenological level, weak coupling in-
tuitions can still be applied? There are certainly forms
of broken symmetry, such as charge-density wave order
in more than 1D, which are at the very least unnatu-
ral at weak coupling, and there can be still more exotic
phases, especially those that support topological order
and fractionalization, which have no weak-coupling ana-
logues. What about the important case of a doped Mott
insulator? It has been argued by many authors that there
is an additional quantity, sometimes referred to as “Mot-
tness”, which through the effect of the constraint of no
double-occupancy produced by a strong local “Hubbard
U ,” can invalidate the quasiparticle picture and preclude
the adiabatic continuation to the weakly interacting ref-
erence state that underlies Fermi liquid theory.

The idea that the quasiparticle picture fails qualita-
tively has gained strong support from a set of papers by
Zhu et al1–4, in which extensive numerical experiments
have been carried out using the density matrix renormal-
ization group (DMRG)5 on a set of t− J ladders. It has
long been thought that the undoped two-leg t−J ladder
is adiabatically related to a band insulator, and a num-
ber of early exact diagonalization6 and quantum Monte
Carlo7 studies supported the idea that doped holes form
conventional quasiparticles. In striking contrast, Zhu et
al reported that a doped hole in a two leg ladder local-
izes at large length scales, a finding that is incompatible
with Bloch’s theorem for any quasiparticle state. Similar
localization was reported on three and four leg systems,
although the data is less extensive. Zhu et al proposed an
explanation for this behavior based on considerations of
“hole phase-strings” and a new type of “Weng statistics.”
It has been further proposed,8 that this new paradigm
can account for a wide range of phenomena in doped Mott
insulators, including stripe formation in the cuprates.

In this paper, we have focussed on the two-leg t − J

ladder with one doped hole. We have carried out DMRG
calculations to extract the ground-state properties of lad-
ders of length up to L = 1000, and time-dependent
DMRG9–11 (tDMRG) calculations on ladders up to L =
120 to obtain unprecedentedly complete information con-
cerning the dynamical one-hole Green function, G. Fol-
lowing Zhu et al we have considered a range of values
of the parameter α, the ratio of the hopping matrix el-
ements and the exchange couplings on the legs and the
rungs of the ladder. In contrast to them, we find that
the one hole state is never localized. On the other hand,
we corroborate their discovery that a notable change in
the character of the one-hole state occurs at a critical
value of α = αc ≈ 0.68; in particular the quasiparticle
effective mass diverges as α → αc. However, this sin-
gular behavior does not imply the existence of a phase
transition, as changes in the properties of a single doped
hole do not reflect changes in the thermodynamic state of
the system. Indeed, we show directly from the structure
of G that the quasiparticle is well defined for α on both
sides of αc, that there is no “spin-charge separation,” and
that the quasiparticle weight, Z(α), is always substan-
tial. Indeed, all the properties of the low energy one hole
states can be adiabatically related to those of a single
hole in a non-interacting “band” insulator – the singular
changes reflect a shift of the ground-state sector from a
Bloch wave vector k = π for α < αc to k = k0(α) < π
for α > αc. The divergent effective mass dramatically
reflects a point at which the minimum of the quasihole
dispersion, ε(k), shifts away from π.

In this paper we will study the 2-leg t− J − α model

H = −
∑
〈i,j〉,σ

tijc
†
i,σcjσ +

∑
〈i,j〉

Jij(Si · Sj −
1

4
ninj). (1)

Here 〈ij〉 indicates nearest-neighbor sites with tij = t
and Jij = J on the rungs, and tij = αt and Jij = αJ on

the legs, c†j,σ creates an electron on site j with spin po-
larization σ, the spin operator on site j is Sj , the charge

is nj =
∑
σ c
†
j,σcj,σ, and the action of the Hamiltonian is

restricted to the Hilbert space with no doubly occupied
sites, nj = 0, 1. The index i = (lx, ly) with ly = 1 and 2
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denoting the two legs and lx runs from 1 to L. Here we set
J/t = 1/3 and study a range of α values. This is the same
realization of the t − J model that was studied by Zhu
et al.. They gave a quasiparticle interpretation to their
results for α < αc ≈ 0.7, but they identified a transition
at α = αc, such that, among other anomalies, for α > αc
and ladders of length L > 100, they reported localization
of the charge in a region of width ξ ∼ 100 < L.

Our ground state DMRG calculations were fairly stan-
dard, the main exception being that an unusually large
number of sweeps were needed for the one hole ground
states. All the calculations reported here were performed
using the ITensor library (http://itensor.org). A suffi-
cient number of states, roughly 200-400 for the one hole
case, were kept to limit the truncation error per step
to ∼ 10−10. For each system, first the ground state for
the undoped system was obtained, with four sweeps giv-
ing high-accuracy convergence, and this matrix product
state |φ〉 was stored. We then applied the operator cj0↓,
where j0 is a site at the center of the system, creating
a one hole state with the hole localized in the center.
Sweeps were then carried out, resulting in a set of ever
better approximate one-hole groundstates, |ψ(s)〉, where
s indicates the number of sweeps. At each sweep we made
diagonal measurements of the energy and the density on
each site, as well as off-diagonal measurements of the hole

amplitude, F (j, s) = 〈φ|c†j↓|ψ(s)〉.
Figure 1(a) shows the spreading of the density in a

1000× 2 system versus sweep with α = 1. Here the hole
density for site j is nh(j) ≡ 1− nj ; the figure shows the
rung hole density n̄h(lx) =

∑
ly
nh(lx, ly). The density

continues to spread out as the sweeps progress. (Note,
to facilitate comparisons with previous results, we have
eschewed tricks that could be used to accelerate conver-
gence to the true ground state, such as starting with
a delocalized hole as the initial state.) The inset in
Fig. 1(a) shows the full width at half-maximum (FWHM)
of the charge density profile for α = 1 ladders of different
lengths L. This value of α is greater than αc and places
the system in the region where Zhu et al. reported lo-
calization. However, as seen in the inset, we find that
the FWHM scales as L. The saturation of the FMHW
reported by Zhu et al. in Fig. 2c of Ref [4] appears to be
an artifact of their calculation which arises from limiting
the number of DMRG sweeps. In fact, as shown in Fig.
4c of [4], they, too, find the charge density extends over
a 200x2 ladder when the sweep number is increased.

Figure 1(b) shows a correlation function
〈Sz(lx, ly)nh(j0)〉 which measures the spin profile
when a dynamic hole is on site j0; here j0 = (200, 2) on a
400× 2 ladder. With this correlation function shown on
a log scale as a function of distance lx along the ladder,
the exponential confinement of the spin and charge is
apparent in the linear lx dependence. A linear fit gives
a decay length of ξ = 3.14 for α = 1; this matches
closely with previous results of 3.19(1) for the spin-spin
correlation length in the undoped ladder.12 (In contrast,
Zhu et al. reported that a similar correlation function

decayed as a power law for α > αc.)
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FIG. 1: (a) The density on each site for α = 1 on the cen-
tral portion of a 1000 × 2 system for the indicated number of
sweeps. The inset shows the full width at half maximum of
the density on a set of smaller lattices which were converged
in the number of sweeps. (b) A correlation function which
measures spin-charge correlations, showing that the spin de-
grees of freedom are exponentially localized close to a dynamic
hole, for α = 0.5 and α = 1. For α = 1, the red line shows a
linear fit to the data.

To obtain the one particle spectral function, instead
of evolving |ψ〉 with DMRG sweeps, we evolve it in real
time, obtaining the state

|ψ(t)〉 = exp(−itH)cj0,↓|φ〉 (2)

After each time-step, the Green function,

G(j, t) = 〈φ|c†j↓|ψ(t)〉eiE0t , (3)

(defined here without the usual i prefactor) was measured
for all sites j, where E0 is the ground-state energy of the
undoped ladder. As time evolves, the wavepacket spreads
out. We always stop the simulation at a time tmax before
the packet reaches the edges of the system. Thus any
finite size effects are completely negligible, arising only
from the undoped state, which has a correlation length
that is very small compared to L. Other sources of error
are the finite tmax, finite truncation error, and finite size
of the time steps. Using time steps τ = 0.05 − 0.1, we
found the time step error was small enough to have no
visible effects on any of the figures below. To measure
and control the other two errors, we varied the number
of states kept (up to m = 2000) and the maximum time
(up to tmax = 100). Any errors in the results we show
primarily appear as slight broadenings of the spectra, and
have no impact on our conclusions. Very high quality
spectral functions have been obtained with tDMRG on
long spin chains13, and tDMRG has been used for short
times on 10×2 ladders14; our high-resolution spectra for
long ladders appear to set a new benchmark.

The ladder is symmetric under reflection symmetry
which interchanges the two legs; correspondingly, the
one-hole states can be classified by their symmetry, Λ =
±1, under reflection. Similarly, the Bloch wave-number is
a good quantum number. Thus, to interpret the results
physically, we perform the Fourier transform of G(j, t)
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with respect to time (using G(j,−t) = G(j, t)∗) and
position along the ladder, projected onto the space of
states of a given reflection symmetry using both linear
prediction13 and windowing to deal with a finite tmax.
The real part of this quantity is the spectral function
A(k, ω), which is shown for Λ = +1 in Fig. 2(a) for the
case α = 1. The Supplementary Information section con-
tains a further discussion of the tDMRG and figures of
A(k, ω) for more values of α15.

The spectral weight is characterized by a sharply de-
fined dispersing pole separated by a gap of order J
from a quasi-particle-magnon continuum. For α = 1,
the minimum in the quasi-particle dispersion occurs at
k0 ≈ 2.01 = 0.640π. A slice of the spectral weight for
α = 0.7 (just above αc ≈ 0.68) at k0 ≈ 2.85 = 0.907π is
plotted versus ω in Fig. 2(b). The dispersion of the pole
in the quasi-particle spectrum versus k for several values
of α is shown in Fig. 2(c). As α increases beyond αc , k0
moves away from π and at large values of α approaches
π/2.
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FIG. 2: (a) Spectral weight function A(k, ω) in the ground-
state (Λ = +1) reflection parity sector for the t-J ladder with
α = 1, obtained with tDMRG color indicating the value of
A(k, ω). We work in energy units where t = 1. (Results
for odd reflection parity, Λ = −1, are shown in the Supple-
mental Section.) (b) A(k, ω) near the quasiparticle peak for
α = 0.7 at k0/π = 0.907. The gap to the start of the con-
tinuum spectrum is of order J . (c) Quasiparticle dispersions
for α = 0.5, 0.7, 1.0, obtained from tDMRG. The stars show
the values of k0 and ε0 obtained from separate ground state
DMRG calculations.

For a given value of α, the minimum hole energy ε0
and the corresponding wave vector k0 can be determined
from the dispersion of the peak in A(k, ω). Alternatively,
for a given value of α, the energy ε0 and wave vector k0
can be determined directly from our ground state DMRG
calculations. The energy minimum ε0 for a given value of
α is equal to the difference in the one hole and zero hole
ground state energies. The wave vector k0 associated
with the one-hole ground state can be determined from

the peak in the spatial Fourier transform of F (j, s), which
sharpens as the sweep number s increases. Plots of ε0 and
k0 versus α are shown in Fig. 3.
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FIG. 3: The one quasi-hole properties as a function of α: The
figure shows (a) Z and ε0, and (b) k0 and m∗. These results
were obtained from 400 × 2 systems from measurements as
the hole spread out with successive sweeps.

Similarly, while m∗ can be extracted from the curva-
ture of the quasi-particle dispersion around k0 and Z
can be obtained from a frequency integration of A(k0, ω),
both of these quantities can be directly determined with
higher accuracy from the ground state DMRG calcula-
tions. An estimate of the quasi-particle spectral weight
Z is given by

Z(s) =
∑
j

|F (j, s)|2 (4)

We find that this estimate converges very rapidly with
the number of sweeps s, much more rapidly than the hole
spreads out. As the DMRG sweeps continue, the energy
E of |ψ(s)〉 converges towards that of the one-hole ground
state with a correction that varies as (8m∗〈x2〉)−1. Here,
〈x2〉 is the variance of the position of the hole, determined
from 〈n̄h(lx)〉. By plotting E versus 〈x2〉−1, with each
point corresponding to a different sweep, one can obtain
an estimate of m∗. In addition, one can increase the
accuracy of the estimate for Z for the infinite ladder by
extrapolating Z versus 〈x2〉−1. For α = 1, for example,
we obtain Z = 0.34067(1). Plots of Z and m∗ are shown
in Fig. 3. As seen in this figure, there is a sharp change
in the quasi-particle character that occurs at αc = 0.68.
There are kinks in the slopes of ε0, k0 and Z and the
curvature of the quasi-particle dispersion vanishes giving
rise to a divergence in the effective mass. The shift in k0
away from π gives rise to the oscillations in the charge
density, as has been previously noted by Zhu et al, which
are found to occur at wave-number 2k0.

Since the one hole state has a well defined quasi-
particle spectral weight, many properties that are mea-
surable in numerical experiments on systems with large
but finite L can be understood in terms of the simpler
problem of one-hole on a 2-leg band insulator. Central
to this understanding is the quasi-particle dispersion re-
lation which determines the values of k = ±k0 at which
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ε(k) is minimized, and the dependence of the hole-energy
near this point, ε(k) = E0 + ε0 + (k − k0)2/2m? + . . .,
where m? is the effective mass. In order to minimize its
zero-point energy on a ladder of large but finite length
L, the one-quasiparticle ground-state will always spread
to fill the extent of the ladder,

ψL(n, τ) ∼ sin(πn/L) cos(k0n− θ), (5)

where θ = k0L/2. The minimum in the ground state
energy of the one hole state is

ε(L) = E0 + ε0 + π2/(2m?L2) + . . . . (6)

Since integrating out the gapped spin degrees of freedom
inevitably renormalizes the bare dispersion, for compar-
ison purposes we consider a non-interacting model with
band structure

E(k) = −Λt⊥ − 2t‖ cos(k)− 2t′‖ cos(2k) (7)

in which Λ = ±1 correspond to the valence and con-
duction bands, respectively, all the t’s are assumed non-
negative and the rung hopping parameter t⊥ to be suf-
ficiently large compared to the near-neighbor and next-
near-neighbor leg hopping parameters t‖ and t′‖ that the

undoped system has an insulating gap. This dispersion
is similar to that shown in Fig. 2c. The parameter that
plays a role analogous to α is α̃ ≡ 4t′‖/t‖; for 0 ≤ α̃ ≤ 1,

the top of the valence band occurs at k = π, while for
α̃ > 1, the top of the valence band occurs at k = ±k0
where cos(k0) = −1/α̃. The critical dependences of
ε0 = −E(k0) , k0 and m∗ on α̃ can be readily derived
from the band dispersion Eq. (7).

[ε0 + t⊥]

t‖
=

{
−(4− α̃)/2 for α̃ < 1
−(2 + α̃2)/2α̃ for α̃ > 1

(8)

1

t‖

dε0
dα̃

=

{
1/2 for α̃ < 1

(2− α̃2)/2α̃2 for α̃ > 1
(9)

π − k0 =


0 for α̃ < 1√

2(α̃− 1)/α̃ for 1� (α̃− 1) > 0
π/2− 1/α̃ for α̃� 1

(10)

and

m∗ =
1

2t‖

{
[1− α̃]−1 for α̃ < 1

α̃(α̃2 − 1)−1 for α̃ > 1
(11)

The qualitative features observed in the evolution of the
one-hole state of the t − J − α model as a function of
α are reflected in the band model as a function of α̃.
i) The one-hole energy ε0 has a non-analytic change in
slope at α̃ = α̃c given by Eq. [9]. ii) The vector k0(α̃)
has a square-root singularity at α̃ = α̃c as given by Eq.
[10], and 2k0 determines the oscillations of the charge
density. iii) The effective mass m∗(α̃) diverges linearly
upon approaching α̃c from both sides as given in Eq. [11].

A formal relation between the strongly and weakly in-
teracting models can be established through adiabatic
continuation. Here, we define a multi-parameter t − J-
Hubbard model Hamiltonian (given explicitly in Eq. (1)
of the Supplemental material) that in one limit is equiv-
alent to the t − J − α model of Eq. 1, and in another
limit represents a non-interacting band-insulator, with
the band structure given in Eq. (7). For all values of pa-
rameters, this Hamiltonian respects all the symmetries
of the problem, including time-reversal, lattice transla-
tional, and mirror symmetries. Adiabtic continuity is es-
tablished between the two limiting models if there exists
a path in parameter space such that the gap (at least
within subspaces defined by irreducible representations
of the symmetry group) is everywhere non-zero. Our
DMRG results establish that there is no gap-closing and
so no barrier to adiabatic continuity upon reducing the
model to one of decoupled rungs in the α = 0 limit. In
this limit the interactions can be adiabatically set to 0,
again without any gap closures. Finally, in the solvable
non-interacting limit, we restore the hopping matrix ele-
ments along the ladder, t‖ and t′‖, still without encoun-

tering any gap closures. (The final two steps are readily
studied analytically.) This analysis constitutes a proof
that the low energy one-hole states of the t−J−α model
are adiabatically connected to those of a non-interacting
band insulator which holds regardless of the value of α
in the entire range we have studied.
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