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We suggest a technique for constructing lower (existence) bounds for the fault-tolerant threshold
to scalable quantum computation applicable to degenerate quantum codes with sublinear distance
scaling. We give explicit analytic expressions combining probabilities of erasures, depolarizing errors,
and phenomenological syndrome measurement errors for quantum low-density parity-check (LDPC)
codes with logarithmic or larger distances. These threshold estimates are parametrically better than
the existing analytical bound based on percolation.

Quantum computers process coherent superpositions
of exponentially many basis states instead of one bi-
nary string at a time. In theory, this parallelism makes
quantum computers faster than the classical ones. How-
ever, quantum superpositions are fragile; without quan-
tum error correction, decoherence would make computa-
tions unfeasible[1]. Further, unlike in a classical setup
restricted to transmission errors, any quantum error-
correcting code (QECC) requires complicated measure-
ments prone to errors. This syndrome extraction from a
system of qubits requires fault-tolerance (FT): all opera-
tions have to limit error propagation. Then, an arbitrar-
ily large quantum computation is possible with a polyno-
mial complexity if physical qubits and elementary gates
exceed some accuracy threshold (threshold theorem) [2–
7].

For years, out of many existing families of QECCs
[8, 9], FT threshold was established for only two code
families, concatenated[2] and surface[5] codes (also, re-
lated color codes[10]). However, both families have
asymptotically zero code rates[11] and therefore require
substantial hardware overhead. A new alternative is
offered by quantum low-density parity-check (LDPC)
codes[12], which can combine finite rates with a nonzero
FT threshold. These are stabilizer codes[8, 13] with a
limited number of qubits in each stabilizer generator (op-
erators to be measured during QEC). Several families of
such codes have finite code rates[14–18]. The thresh-
old existence has been proven[19] by two of us using
ideas from percolation theory. Subsequently, a related
approach of Gottesman[20] demonstrated that such codes
can achieve scalable quantum computation with a finite
overhead per logical qubit.

While Ref. 19 gives a finite threshold for certain quan-
tum LDPC codes, the actual threshold value and its
dependence on the parameters are both far off. The
technique[19] also fails to give a finite threshold whenever
a single qubit is shared by many stabilizer generators.

Here we present an approach resulting in parametri-
cally better lower bounds for the thresholds, for both

a quantum channel and a phenomenological error model
with FT setting. We consider infinite sequences of “long”
quantum LDPC codes of increasing length n, whose dis-
tances d scale with n at least logarithmically,

d ≥ D lnn, D > 0. (1)

A super-logarithmic scaling of the distance (including a
power law d ≥ Anα with A,α > 0) gives D → ∞. At
the same time, we limit all stabilizer generators to some
fixed number of w or fewer qubits. For any sequence of
such codes, we give an analytical lower (existence) bound
combining uncorrelated qubit erasures, depolarizing er-
rors, and syndrome measurement errors. We also give a
similar bound tailored for CSS codes. These bounds no
longer require that every qubit be included in a limited
number of stabilizer generators. Tying our lower bound
on erasure threshold with other results[21, 22], we restrict
parameters of LDPC codes with certain properties.

We consider QECCs defined on the n-qubit Hilbert
space H⊗n2 . Any operator acting in H⊗n2 can be repre-
sented as a linear combination of Pauli operators, ele-
ments of the n-qubit Pauli group Pn of size 22n+2,

Pn = im{I,X, Y, Z}⊗n, m = 0, . . . , 3, (2)

where X, Y , and Z are the usual Pauli matrices, I is the
identity matrix, and im a phase factor. Weight wgtE of
a Pauli operator E ∈ Pn is the number of non-identity
terms in its expansion (2). A stabilizer code Q [[n, k, d]]
is a 2k-dimensional subspace of the Hilbert space H⊗n2 ,
a common +1 eigenspace of operators in an Abelian sta-
bilizer group S = 〈G1, . . . , Gr〉 with generators Gi,

Q = {|ψ〉 : S |ψ〉 = |ψ〉 ,∀S ∈ S }, −11 6∈ S . (3)

A narrower set of Calderbank-Shor-Steane (CSS) codes
[23, 24] contains codes where each stabilizer generator is
a product of only Pauli X or Pauli Z operators. For a
stabilizer group with r independent generators, the di-
mension of the quantum code is k = n − r; for a CSS
code with rµ independent generators of type µ = X,Z,
respectively, k = n− rX − rZ .
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Error correction is done by measuring the stabilizer
generatorsGi, i = 1, . . . , r; the corresponding eigenvalues
(−1)si , si ∈ {0, 1} form the syndrome s ≡ (s1, s2, . . . , sr)
of the error. Measuring the syndrome projects any state
|ψ〉 ∈ H⊗n2 into one of the 2r subspaces Qs equivalent to
the code Q ≡ Q0. A detectable error E ∈ Pn anticom-
mutes with some generator(s) of the stabilizer; otherwise
it is called undetectable. Then, for any |ψ〉 ∈ Q, the syn-
drome measured in the state E |ψ〉 is non-zero for a de-
tectable error, and it is zero otherwise. While operators
in the stabilizer group are undetectable, they act trivially
on the code; such errors can be ignored. Any two Pauli
errors E1, E2 which differ by a phase and an element of
the stabilizer, E2 = eiαE1S, S ∈ S , are called degen-
erate. Mutually degenerate errors act identically on the
code, they cannot (and need not) be distinguished.

The distance d of a code Q is the minimum weight of
an undetectable Pauli error E ∈Pn which is not a part
of the stabilizer, E 6∈ S (up to a phase). A code with
distance d detects non-trivial Pauli errors of weight up
to d− 1, and corrects such errors of weight up to bd/2c.

A code is called degenerate if its stabilizer includes a
non-trivial operator S ∈ S with weight smaller than the
distance, 0 6= wgtS < d. Degenerate codes are nice since
generators of small weight are easier to measure; all codes
with a known FT threshold are degenerate. The ultimate
case of degeneracy are w-limited quantum LDPC codes,
where every stabilizer generator has weight w or smaller.

We consider three simple error models[25]: quantum
depolarizing channel, where with probability p an incom-
ing qubit is replaced by a qubit in a random state; inde-
pendent X/Z errors, where Pauli operators X and Z are
applied to each qubit with probabilities pX and pZ , re-
spectively, and the quantum erasure channel, where with
probability y each qubit is replaced by an “erasure state”
|2〉 orthogonal to both |0〉 and |1〉. We also address FT us-
ing a phenomenological error model where measurement
errors happen independently with probability q. Such an
error affects the syndrome bits but not the qubit states.
Our thresholds are as follows:

Theorem 1. Any sequence of long quantum codes (1)
with stabilizer generators of weights w or less can be de-
coded with a vanishing error probability if channel prob-
abilities (y, p) of erasures and depolarizing errors satisfy
the restriction 2(w−1) Υ(y, p) < e−1/D, where parameter
D is defined in Eq. (1) and

Υ(y, p) ≡ y + (1− y)

{
2p

3
+ 2

[p
3

(1− p)
]1/2}

. (4)

Theorem 2. Any sequence of long CSS codes (1) with
generator weights not exceeding wX , wZ can be decoded
with a vanishing error probability if channel probabili-
ties (y, pX , pZ) of erasures and independent X/Z errors

satisfy the restrictions (wX − 1) ΥCSS(y, pZ) < e−1/D,
(wZ − 1) ΥCSS(y, pX) < e−1/D, where

ΥCSS(y, p) ≡ y + 2(1− y) [p(1− p)]1/2 . (5)

FT case gives weaker versions of Theorems 1 and 2:

Theorem 3. If phenomenological syndrome measure-
ment errors occur with probability q, vanishing error rates
are achieved by (a) stabilizer codes of Theorem 1 if

4 [q(1− q)]1/2 + 2wΥ(y, p) < e−1/D, (6)

(b) CSS codes of Theorem 2 if

4 [q(1− q)]1/2 + wXΥCSS(y, pZ) < e−1/D,

4 [q(1− q)]1/2 + wZΥCSS(y, pX) < e−1/D.
(7)

Our analysis is based on counting irreducible unde-
tectable operators:

Definition 1. For a given stabilizer code Q, an unde-
tectable operator is called irreducible if it cannot be de-
composed as a product of two undetectable Pauli operators
with support on non-empty disjoint sets of qubits.

This definition implies:

Lemma 4. Any undetectable operator E ∈ Pn can be
written as E =

∏
i Ji, where undetectable operators Ji ∈

Pn, wgt Ji 6= 0, are irreducible and pairwise disjoint.

For a given code, let U ⊂ Pn \S denote the set of
all non-trivial irreducible undetectable Pauli operators.

Given some error probability function P (E), consider
a syndrome-based decoder which returns the Pauli oper-
ator E ∈Pn that maximizes P (E) for a given syndrome.
Notice that this is not a maximum-likelihood (ML) de-
coder since we ignore contributions of errors degenerate
with E. Using a statistical-mechanical analogy[5, 7, 26],
ML decoding corresponds to minimizing the free energy;
here we ignore entropy contribution resulting from de-
generate errors and just minimize the energy ε(E) ≡
− lnP (E). Such a procedure is intrinsically sub-optimal;
thus a lower bound for decoding threshold is also a lower
bound for the syndrome-based ML decoding.

Now, let E ∈ Pn be an actual error, and E′ be the
same-syndrome Pauli operator which minimizes the en-
ergy ε(E′). The product E′E† is undetectable, it satisfies
Lemma 4, which gives a decomposition E′E† =

∏
i Ji

into irreducible undetectable operators, Ji ∈ S ∪ U .
Since the operators Ji are mutually disjoint, none of them
can decrease the energy of E′, ε(JiE

′) ≥ ε(E′). Other-
wise E′ would not be the smallest-energy error with the
same syndrome. The minimal-energy error E′ is correct
iff E′E† is trivial, which implies that every irreducible
component needs to be in the stabilizer, Jj ∈ S (up to
a phase).
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Otherwise, there is an irreducible operator U ∈ U
which does not increase the energy of the original error E,
ε(UE) ≤ ε(E). Let B(U) ≡ {E ∈Pn : ε(UE) ≤ ε(E)}
be the full set of such “bad” errors for a given U ∈ U .
Minimum-energy decoding gives vanishing error rate if

Prob
[
E : E ∈

⋃
U∈U

B(U)
]
→ 0, n→∞. (8)

Then the union bound for all B(U) gives the following
sufficient condition for error-free decoding:∑

U∈U

Prob [E : E ∈ B(U)]→ 0, n→∞. (9)

For uncorrelated errors only the qubits in the support
of U affect the probabilities in Eq. (9). With uniform
error distributions, these probabilities depend only on the
weights f ≡ wgtU of the operators U ∈ U . For example,
if erasures occur with a single-qubit probability y, a bad
error must cover the entire support of U , which gives
simply Prob[E : E ∈ B(U)] = ywgt(U). Let Nf denote
the number of operators U ∈ U of weight f ≡ wgtU .
Since members of the stabilizer group are excluded from
U , Nf = 0 for f < d. Thus, in the case of the erasure
channel, the condition (9) is equivalent to∑

f≥d

Nmy
m → 0, n→∞. (10)

To construct an upper bound for Nf , we use a simpli-
fied version of the cluster-enumeration algorithm orig-
inally designed for finding the distance of a quantum
LDPC code[27, 28]. First, fix an arbitrary order of the r
stabilizer generators Gi, 1 ≤ i < r. Start by placing any
of {X,Y, Z} at a position j ∈ {0, . . . , n−1} and place the
corresponding Pauli operator as the only element of the
list of the components of the operator being constructed.
At every subsequent step, take the generator Gi corre-
sponding to a non-zero syndrome bit with the smallest
index i, and choose any position j in the support of Gi
that is not yet selected; there are up to wgtGi−1 choices.
Choose a single-qubit Pauli operator different from the
term present at the position j in the expansion (2) of Gi,
and add it to the list. This sets the syndrome bit si to
zero without modifying any of the existing entries in the
list. At every step of the recursion, zero syndrome means
a completed undetectable cluster; no position available to
correct a chosen syndrome bit means recursion got stuck.
In either case we need to go back one step by removing
the element last added to the list. The procedure stops
when we exhaust all choices.

If the recursion has depth f , we only construct opera-
tors of weight up to f . There are 3n possible choices for
the first step, and up to 2(wgtGi−1) for each subsequent
step. Then a w-limited LDPC code yields at most

Nf = 3n[2(w − 1)]f−1 (11)

recursion paths to construct operators of weight up to
f . This algorithm returns only undetectable operators.
While not all of them are irreducible, all irreducible oper-
ators of weight f are constructed with depth-f recursion,
see Sec. I in the Online Supplement. These arguments
give the upper bound Nf ≥ Nf for the number Nf of
the irreducible operators U ∈ U of weight wgtU = f .
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Z
ZZ

Z
X

X X
X

1 2 3

4

FIG. 1. (color online) (a) Toric code generators: Plaquette A�

(shaded rounded square) and vertex B+ (shaded diamonds)
operators constructed as products of four Pauli X and Pauli
Z operators respectively. (b) A reducible cluster is counted
as one or two clusters depending on the order in which the
numbered qubits are chosen.

For CSS codes, let UX ⊂ U and UZ ⊂ U be the sets of
non-trivial irreducible undetectable operators composed

of only X and Z operators respectively, and N
(µ)
f be the

number of weight-f operators in Uµ, µ ∈ {X,Z}. For
codes in Theorem 2, this gives improved bounds, e.g.,

N
(X)
f ≤ N (X)

f ≡ n(wZ − 1)f−1. (12)

We illustrate the cluster enumeration on the toric code
[[2L2, 2, L]], a CSS code with wX = wZ = 4 generators lo-
cal in two dimensions. The qubits are on the bonds of an
L × L square lattice with periodic boundary conditions
along both bond directions. The stabilizer generators
are the plaquette and vertex operators, A� =

∏
j∈�Xj

and B+ =
∏
j∈+ Zj [Fig. 1(a)]. A type-X cluster can

be started by placing an X operator anywhere, which
makes the two operators B+ on the neighboring vertices
unhappy (the corresponding syndrome bits are non-zero).
Either can be corrected by placing an additional X oper-
ator on one of the remaining three open bonds adjoining
the corresponding vertex. This produces an additional
unhappy operator B+ at the other end of the bond, etc.
An undetectable cluster corresponds to a closed walk (cy-
cle). Any cycle can be constructed this way. A topologi-
cally trivial cycle gives a member of the stabilizer group,
while a cycle winding an odd number of times over one
or both periodicity directions corresponds to a logical op-
erator. Further, a cycle with self intersections gives an
operator which can be decomposed into a product of two
or more disjoint irreducible operators [Fig. 1(b)].

Combining Eq. (10) and the bound Nf ≤ Nf , see
Eq. (11), we can prove a simplified version of Theorem 1
for erasures only. Namely, consider the sum

Qd(y) ≡
∑
m≥d

Nfy
f =

3ny [2y(w − 1)]d−1

1− 2y(w − 1)
; (13)
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it converges absolutely for 2y(w−1) < 1. Asymptotically,
Qd(y) converges to zero as long as n[2y(w − 1)]d → 0.
This is true for any y < e−1/D/2(w − 1) for codes in
Eq. (1). The sum (13) majors Eq. (10) term by term,
which gives a lower bound for erasure threshold, yc ≥
e−1/D/2(w−1), cf. Theorem 1. With the distance scaling
super-logarithmically (e.g., as a power law), the sum (13)
vanishes anywhere within the convergence radius, y <
[2(w − 1)]−1, and we may just set e−1/D → 1.

Theorems 1 and 2, which combine erasures and errors,
can be proved similarly if we notice that the probabilities
in Eq. (9) can be bounded as in Eq. (10), with some
effective erasure rate Υ ≥ y [Online Supplement, Sec. II.]

Arguments used so far require ideal syndrome mea-
surements. For quantum codes, it is more important
to consider the FT case where errors can occur in any
quantum gate during syndrome measurements[2, 4, 29–
33]. Such a complete analysis is beyond the scope of
this work. Instead, we give a simplified estimate based
on a phenomenological error model, which assumes that
measured syndrome bits can have errors, but otherwise
there is no effect on the qubits[5, 10, 19]. Error correc-
tion involves repeated syndrome measurement cycles and
an auxiliary code which combines the syndromes mea-
sured in subsequent cycles. We only consider the simplest
case where repetition code is used for combining the syn-
dromes. For a CSS code, with equal uncorrelated qubit
and syndrome errors q = pX = pZ , the net effect is equiv-
alent to increasing the weights of stabilizer generators in
Eq. (12) and in Theorem 2 by two, w → w+ 2. With the
surface codes, decoding corresponds to minimal-weight
matching of chains in three dimensions[5]. For a more
general result, we have to bound the number of weight-f
clusters Nf,fq which include fq “qubit” Pauli operators,
and f − fq binary syndrome errors. Theorem 3 follows
from the bound Nf,fq ≤ Nf,fq ,

Nf,fq ≡ 3nm 2f
(
f

fq

)
wfq , (14)

where m is the number of measurement cycles (same as
the code distance d, see the Online Supplement, Sec. III.)

How tight are these bounds? The toric code (w = 4)
has an erasure threshold yc = 0.5 and the ML threshold
for independent X/Z errors pZc = pXc ≈ 0.11, compared
to y∗c = 1/3 and p∗Zc ≈ 0.029 of Theorem 2. Bound (12)
was also verified by counting irreducible clusters numer-
ically (see Sec. IV of the Online Supplement) and fitting
with lnNf = A+ ζwf , where ζw ≤ w − 1 for CSS codes
with row weight w was expected from (12). In particular,
we got ζ6 ≈ 4.76, ζ7 ≈ 5.74, and ζ8 ≈ 5.79, indicating
that our bounds for Nf are relatively tight.

In conclusion, we constructed lower bounds on the
thresholds of weight-limited quantum LDPC codes with
sublinear distances scaling logarithmically or faster with
the code length n. These bounds are based on estimating

the number of logical operators which cannot be decom-
posed into a product of disjoint undetectable operators.
The resulting analytical expressions combine probabili-
ties of erasures, depolarizing errors (independent X/Z
errors for CSS codes), and syndrome measurement errors
using a phenomenological error model. These bounds are
much stronger than those constructed previously[19], and
they have a different dependence on the code parameters.
In particular, we no longer require that each qubit be in-
volved in a limited number of stabilizer generators. Qual-
itatively, the main difference is that the present analysis
is not based on percolation theory.

This technique could carry over from LDPC codes to
more general degenerate codes, where the corresponding
scaling of Nf can be calculated numerically or analyti-
cally (e.g., in the case of concatenated codes). It would be
interesting to see if a finite FT threshold exists for finite-
rate and finite relative distance quantum LDPC codes
constructed by Bravyi and Hastings[18]. A related open
problem is the existence of FT threshold for subsystem
codes, e.g., a subclass of those constructed in Ref. [34].

Our bounds also limit the parameters of quantum
LDPC codes, in particular, their rate R. Indeed, The-

orem 2 gives the erasure threshold y
(CSS)
c ≥ 1/(w−1) for

CSS LDPC codes with super-logarithmic distance. Along
with the trivial upper bound yc ≤ (1−R)/2, this implies
that no such codes exist if R > 1− 2/(w− 1). For codes
with w = 4, this gives R ≤ 1/3, whereas the only known
example of such codes is R = 0 (toric codes). These can
be further improved by using the tighter upper bounds
constructed for quantum LDPC codes in Ref. 21.

Also, Pastawski and Yoshida pointed to us that our
erasure thresholds can be combined with their upper
bound[22] for codes which include non-trivial transversal
logical gates from m-th level of the Clifford hierarchy[35],
ym ≤ 1/m. Thus, e.g., only CSS codes with generators of
weight w ≥ m+1 may include such logical gates. We note
that the analysis in Refs. 22 and 35 is largely based on
the cleaning lemma[11, 36] and the notion of correctable
subsets, which complement our irreducible undetectable
operators (Def. 1). It would be interesting to check if this
relation could help extending the bounds from Refs. 11
to general LDPC codes.
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