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We give two strengthenings of an inequality for the quantum conditional mutual information of
a tripartite quantum state recently proved by Fawzi and Renner, connecting it with the ability to
reconstruct the state from its bipartite reductions. Namely we show that the conditional mutual in-
formation is an upper bound on the regularised relative entropy distance between the quantum state
and its reconstructed version. It is also an upper bound for the measured relative entropy distance of
the state to its reconstructed version. The main ingredient of the proof is the fact that the conditional
mutual information is the optimal quantum communication rate in the task of state redistribution.

Quantum information theory is the successful frame-
work describing the transmission and storage of in-
formation. It not only generalized all of the classi-
cal information-theoretic results but also developed a
wealth of tools to analyze a number of scenarios beyond
the reach of the latter, such as entanglement processing.
One of the central quantities of the classical information
theory which directly generalizes to quantum informa-
tion is the conditional mutual information (CMI). For a
tripartite state ρBCR it is defined as

I(C : R|B)ρ (1)
:= S(BC)ρ + S(BR)ρ − S(BCR)ρ − S(B)ρ,

with S(X)ρ := − tr(ρX log ρX) the von Neumann en-
tropy. It measures the correlations of subsystems C and
R relative to subsystem B. The fact the classical CMI
is non-negative is a simple consequence of the proper-
ties of the probability distributions; the same fact for the
quantum CMI is equivalent to a deep result of quan-
tum information theory – strong subadditivity of the
von Neumann entropy1. Naturally, this led to a variety
of applications in different areas, ranging from quantum
information theory2–4 to condensed matter physics5–7.

In the classical case, for every tripartite probability
distribution pXY Z ,

I(X : Z|Y ) = min
q∈MC

S(p||q), (2)

where S(p||q) :=
∑
i pi log(pi/qi) is the relative entropy

and the minimum is taken over the set MC of all distri-
butions q such that X − Y − Z form a Markov chain.
Equivalently, the minimization in the right hand side
of Eq. (2) could be taken over Λ ⊗ idZ(pY Z), for re-
construction channels Λ : Y → Y X . In particular,
I(X : Z|Y ) = 0 if, and only if, X−Y −Z form a Markov
chain (which is equivalent to the existence of a channel
Λ : Y → Y X such that pXY Z = Λ⊗ idZ(pY Z)).

The class of tripartite quantum states ρBCR satisfying
I(C : R|B)ρ = 0 has also been similarly characterized8:
the B subsystem can be decomposed as B =

⊕
k BL,k ⊗

BR,k (with orthogonal vector spaces BL,k ⊗ BR,k) and
the state written as

ρBCR =
⊕
k

pkρCBL,k
⊗ ρBR,kR (3)

for a probability distribution {pk} and states ρCBL,k
∈

C ⊗ BL,k and ρBR,kR ∈ BR,k ⊗ R. States of this form
are called quantum Markov, since in analogy to Markov
chains, conditioned on the outcome of the measurement
onto {BL,k ⊗ BR,k}, the resulting state on C and R is
product.

Paralleling the classical case, ρBCR is a quantum
Markov state if, and only if, there exists a reconstruction
channel Λ : B → BC such that Λ⊗ idR(ρBR) = ρBCR

25.
Having generalized the definition of CMI, can we also
retain the above equivalence, with the set of quantum
Markov states taking the role of Markov chains. Surpris-
ingly, it turns out that this is not the case9 and it seems
not to be possible to connect states which are close to
Markov states with states of small conditional mutual
information in a meaningful way (see however2,10).

Nonetheless, it might be possible to relate states with
small conditional mutual information with those which
can be approximately reconstructed from their bipartite
reductions, i.e. such that Λ ⊗ idR(ρBR) ≈ ρBCR. In-
deed, several conjectures appeared recently in this re-
spect5,12–14.

A recent breakthrough result of Fawzi and Renner
gives the first such connection. They proved the follow-
ing inequality15:

I(C : R|B)ρ ≥ min
Λ:B→BC

S1/2(ρBCR||Λ⊗ idR(ρBR)). (4)

with S1/2(ρ||σ) := −2 logF (ρ, σ) the order- 1
2 Rényi rel-

ative entropy, where F (ρ, σ) = tr((σ
1
2 ρσ

1
2 )

1
2 ) is the fi-
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delity17. It implies that if the conditional mutual infor-
mation of ρBCR is small, there exists a reconstructing
channel Λ : B → BC such that Λ ⊗ idR(ρBR) has high
fidelity with ρBCR.

In this paper, we prove a strengthened version of
the Fawzi-Renner inequality. We also give a sim-
pler proof of the inequality, based on the task of state
redistribution4 (which gives an operational interpreta-
tion to the conditional mutual information).

Result. Let S(ρ||σ) := tr(ρ(log ρ−log σ)) be the quantum
relative entropy of ρ and σ. Define the measured relative
entropy as

MS(ρ||σ) = max
M∈M

S(M(ρ)||M(σ)), (5)

with M the set of all quantum-classical channels
M(ρ) =

∑
k tr(Mkρ) |k〉 〈k|, with {Mk} a POVM and

{|k〉} an orthonomal basis.
The main result of this paper is the following:

Theorem 1. For every state ρBCR,

I(C : R|B)ρ (6a)

≥ lim
n→∞

min
Λn:Bn→BnCn

1

n
S(ρ⊗nBCR||Λn ⊗ idRn(ρ⊗nBR)) (6b)

≥ min
Λ:B→BC

MS(ρBCR||Λ⊗ idR(ρBR)) (6c)

≥ min
Λ:B→BC

S1/2(ρBCR‖Λ⊗ idR(ρBR)). (6d)

Eq. (6d) is the Fawzi-Renner inequality
(Eq. (4)) and follows from Eq. (6c) using the
bound S(π||σ) ≥ S1/2(π||σ)18 and the fact that
minM∈M F (M(π),M(σ)) = F (π, σ)19. Eq. (6c) also
generalizes one side of Eq. (2) to quantum states,
implying that at least for classical states ρ it is optimal.

Our lower bound provides a substantial improvement
over the original Fawzi-Renner bound even for classi-
cal states. To see this, consider the classically corre-
lated state ρCBR = ρCR ⊗ IB

dB
with d := dC = dR

and ρCR = (1 − ε)|00〉〈00|CR + ε
d−1

∑d−1
k=1 |kk〉〈kk|CR.

Then (6c) becomes MS(ρBCR||σBC⊗ρR), where σBC de-
pends on the channel Λ which minimizes (6c). The mea-
sured relative entropy is equal to the ordinary classical
relative entropy between the distribution pBpCR (gen-
erated from ρBCR) and the product distribution qBCpR
(generated from σBC⊗ρR) optimized over all quantum-
classical channels. Observing that pCR is maximally cor-
related whereas qCpB is the product distribution irre-
spective of Λ, (6c) equals to I(C : R) ≈ ε log (d− 1).
The corresponding Fawzi-Renner bound (6d) becomes
− logF (ρCR, ρC ⊗ ρR) ≤ − log(1 − ε) ≈ ε. Thus, the
lower bound (6c) is optimal for classical states.

Another application of our result is the well-known
problem of classification of the short-range entangled
states studied by A. Kitaev16. Defining such class of

states is non-trivial and one of the natural properties to
require is the ability generate them locally: there must
exist a O(1) quantum circuit which generates the des-
ignated state from a product state. In particular, one
sees that states with low conditional mutual informa-
tion can be generated from the product states according
to Fawzi-Renner bound. Our result improves the lower
bound when we quantify the distance between the states
using measured relative entropy.

Li and Winter conjectured in10 that Eq. (6c) can be
strengthened to have the relative entropy in the right
hand side (instead of the measured relative entropy).
We leave it as an open question, but we note that Eq.
(6b) shows that an asymptotic version of the conjectured
inequality does hold true.

Proof of Theorem 1: The main tool in the proof will
be the state redistribution protocol of Devetak and
Yard4,23,24 which gives an operational meaning for the
conditional mutual information as twice the optimal
quantum communication cost of the protocol. Consider
the state |ψ〉⊗nABCR shared by two parties (Alice and Bob)
and the environment (or reference system). Alice has
AnCn (where we denote n copies of A by An and like-
wise for C,B and R), Bob has Bn, and Rn is the refer-
ence system. In state redistribution, Alice wants to re-
distribute the Cn subsystem to Bob using pre-shared en-
tanglement and quantum communication.

It was shown in4,24 that using pre-shared entangle-
ment Alice can send the Cn part of her state to Bob,
transmitting approximately n

2 I(C : R|B) qubits in the
limit of a large number of copies n. More precisely:

Lemma 2 (State Redistribution Protocol4,24). For every
|ψ〉ABCR there exist completely-positive trace-preserving en-
coding maps En : AnCnXn → AnGn and decoding maps
Dn : BnGnYn → BnCn such that

lim
n→∞

‖Dn◦En(|ψ〉 〈ψ|⊗nABCR⊗ΦXnYn
)−|ψ〉 〈ψ|⊗nABCR ‖1 = 0

(7)
and

lim
n→∞

log dim(Gn)

n
=

1

2
I(C : R|B)ρ, (8)

where ρBCR := trA(|ψ〉 〈ψ|ABCR) and ΦXnYn
is a maxi-

mally entangled state shared by Alice (who has Xn) and Bob
(who has Yn); ‖.‖1 denotes the trace norm.

We split the proof of Theorem 1 into the proof of
Propositions 3 and Eq. (17) below.

Proposition 3 follows from the state redistribution
protocol outlined above. The main idea is the follow-
ing: suppose that in the state redistribution protocol Bob
does not receive any quantum communication from Al-
ice, but instead he ”mocks” the communication (locally
preparing the maximally mixed state in Gn) and applies
the decoding map Dn. It will follow that even though
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the output state might be be very far from the target one,
the relative entropy per copy of the output state and the
original one cannot be larger than twice the amount of
communication of the protocol (which is given by the
conditional mutual information).

Proposition 3. For every state ρBCR,

I(C : R|B)ρ (9)

≥ lim
n→∞

min
Λ:Bn→BnCn

1

n
S(ρ⊗nBCR||Λ⊗ idRn(ρ⊗nBR)).

Proof. Let |ψ〉ABCR be a purification of ρBCR. Con-
sider the state redistribution protocol for sending C
from Alice (who has AC) to Bob (who has B). Let
φGnYnAnBnRn := En ⊗ idBnRnYn

(|ψ〉 〈ψ|⊗nABCR ⊗ ΦXnYn
)

be the state after the encoding operation.
Using the operator inequality πMN ≤ dim(M)IM ⊗

πN , valid for every state πMN , we find

φGnYnBnRn ≤ dim(Gn)2τGn
⊗ τYn

⊗ ρ⊗nBR. (10)

with τYn , τGn the maximally mixed state on Yn and Gn,
respectively. We used that φYnBnRn = τYn ⊗ ρ⊗nBR, which
holds true since En only acts non-trivially on AnCnXn

Let Dn : GnYnB
n → BnCn be the decoding operation

of Bob in state redistribution (see Lemma 2) and define
D̃n := (1 − 2−n)Dn + 2−nΛdep, with Λdep the depolariz-
ing channel mapping all states to the maximally mixed.
Since D̃n is completely positive, using Eq. (10) we get

(D̃n ⊗ idRn)(τGn
⊗ τYn

⊗ ρ⊗nBR) (11)

≥ dim(Gn)−2(D̃n ⊗ idRn)(φGnYnBnRn).

From the operator monotonicity of the log (see
Lemma 1 in the Supplemental Material),

S(ρ⊗nBCR||(D̃n ⊗ idRn)(τGn
⊗ τYn

⊗ ρ⊗nBR)) (12)

≤ S(ρ⊗nBCR||(D̃n ⊗ idRn)(φGnYnBnRn)) + 2 log(dim(Gn)).

Eq. (7) gives

lim
n→∞

‖ρ⊗nBCR − (D̃n ⊗ idRn)(φGnYnBnRn)‖1 = 0. (13)

Since (D̃n ⊗ idRn)(φGnYnBnRn) = (1 − 2−n)(Dn ⊗
idRn)(φGnYnBnRn) + 2−nτ⊗nBC ⊗ ρ

⊗n
R (with τBC the maxi-

mally mixed state on BC), Lemma 2 in the Supplemen-
tal Material gives

lim
n→∞

1

n
S(ρ⊗nBCR||(D̃n ⊗ idRn)(φGnYnBnRn)) = 0, (14)

and so

I(C : R|B)ρ (15)

= 2 lim
n→∞

log(dim(Gn))

n

≥ lim
n→∞

min
Λn:Bn→BnCn

1

n
S(ρ⊗nBCR||(Λn ⊗ idRn)(ρ⊗nBR)).

ut

Even though we do not know whether

lim
n→∞

min
Λ:Bn→BnCn

1

n
S(ρ⊗nBCR||Λ⊗ idRn(ρ⊗nBR))

?
≥ min

Λ:B→BC
S(ρBCR||Λ⊗ idR(ρBR)), (16)

it turns out that a similar inequality holds true if we
replace the relative entropy by its measured variant (see
section B in the Supplemental Material): For every state
ρBCR one has

lim
n→∞

min
Λ:Bn→BnCn

1

n
S(ρ⊗nBCR||Λ⊗ idRn(ρ⊗nBR))

≥ min
Λ:B→BC

MS(ρBCR||Λ⊗ idR(ρBR)). (17)

Discussion and Open Problems. The main result of this
paper, on one hand, and Theorem 4 of Ref.9, on the other
hand, give

min
σ∈QMS

S(ρBCR||σBCR) (18)

≥ I(C : R|B) ≥ min
Λ:B→BR

MS(ρBCR||Λ⊗ idR(ρBR)),

with QMS the set of quantum Markov states given by
Eq. (3). For probability distributions the lower and up-
per bound in Eq. (18) coincide, giving Eq. (2). But in the
quantum case the two can be very far from each other.

An interesting question is whether we can also have
equality in the quantum case when minimizing over the
set of reconstructed states. In particular we can ask
whether Eq. (9) holds with equality. It turns out that
this is false and can be disproved using pure states of
dimension 2× 2× 2 and the transpose channel, defined
for a tripartite state ρBCR as

T (π) :=
√
ρBC

(
ρ
− 1

2

B πρ
− 1

2

B ⊗ idC

)√
ρBC . (19)

In Fig. 1 we plot the conditional mutual informa-
tion against the reconstructed relative entropy using
the transpose channel (i.e. S(ρBCR‖TB ⊗ idR(ρBR)))
for 10,000 randomly chosen pure states of dimension
2× 2× 2. We see that for roughly 73% of the points, the
relative entropy is strictly smaller than the conditional
mutual information when using the transpose channel.
Since any particular reconstruction map also puts an up-
per bound on the minimum relative entropy, Eq. (9)
must sometimes be a strict inequality. Similar numeri-
cal results were found in an unpublished early version
of10.

In the proof of Theorem 1 we were not able to give
an explicit optimal reconstruction map. In the context
of approximate recovery for pure states, the transpose
channel is optimal up to a square factor20 (using the
fidelity as a figure of merit). Does the same hold for
mixed states?
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FIG. 1: Counterexamples for the case of equality in Eq. (9):
conditional mutual information against the reconstructed rel-
ative entropy using the transpose channel. The sample con-
sists of 10,000 random pure states of dimension 2× 2× 2.

Another interesting open problem is whether we can
improve the lower bound in Eq. (18) to have the rela-
tive entropy, instead of the measured relative entropy.

Proposition 3 and Lemma 5 in the Supplemental Ma-
terial shows that the result would follow from the fol-
lowing conjectured inequality: Given a state ρ, a convex
closed set of states S, and a measure µwith support only
on S,

lim inf
n→∞

1

n
S

(
ρ⊗n||

∫
µ(dσ)σ⊗n

)
?
≥ min

σ∈S
S(ρ||σ). (20)

The case when ρBR = ρB ⊗ ρR was recently proved
in22. We can also easily prove the inequality classically,
using hypothesis testing which is universal for the alter-
native hypothesis. However since there is no quantum
hypothesis test universal for the alternative hypothesis21

for general sets S, we leave the inequality in the quan-
tum case as an open problem for future work.
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