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Abstract 

Thermally activated deformation is investigated in two metallic glass systems with different 

cooling histories.  By probing the atomic displacements and stresses changes on the potential 

energy landscape (PEL), two deformation modes—localized process and cascade process—have 

been observed. The localized deformation involves less than 30 atoms, appears in both systems, 

and its size is invariant of cooling history. However, the cascade deformation is more frequently 

observed in the fast quenched system than in the slowly quenched system. The origin of the 

cascade process in the fast quenched system is attributed to the higher density of local minima on 

the underlying PEL.  
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Deformation in amorphous system is believed to occur through local rearrangement of a 

group of atoms, known as the shear transformation zones (STZs) [1-5]. While the behaviors of 

STZs under external strain-driven condition (e.g. athermal quasistatic (AQS) limit) have been 

extensively investigated[6-9], the atomistic mechanisms of STZs’ nucleation and relaxation 

under thermal excitation, as well as the interplays between thermal activation and external shear 

still remain as open challenges[10].  Recently Rodney et al[10, 11] and Derlet et al[12, 13] have 

made significant progress in understanding thermally activated plasticity in glasses based on the 

concept of potential energy landscape (PEL). In the present study, we focus our scope on the 

structures of underlying PEL in metallic glasses, particularly on how the PEL is affected by 

thermal processing history (i.e. cooling rates during glass formation), and how the mechanisms 

of thermally activated deformation is influenced by it. 

 
Figure 1: A schematic illustration on potential energy landscape (PEL) and an elementary deformation 

process from the perspective of PEL. 

In the perspective of PEL[14, 15], elementary deformation units are identified as the 

hopping between the neighboring “sub-basins” confined within a “meta-basin”[16-18], termed 
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β  relaxations, whereas the transitions between “meta-basins”, also known as α relaxations, 

correspond to percolation of β  relaxations[19] and lead to macroscopic plastic flow in glasses. 

As illustrated in Fig.1, the elementary deformation process consists of two key stages: namely 

the activation stage (from the initial states to the nearby saddle states), and the relaxation stage 

(from the saddle states to the final states). The former stage constitutes the trigger mechanism of 

STZs[20], while the latter stage determines the response of the system to accommodate the 

relaxation of STZs. To identify the saddle states and the final states, we employ the activation-

relaxation technique (ART)[21, 22]—known to be capable of providing representative PEL 

samplings in amorphous systems[11, 23]—to a well-known metallic glass model system 

Cu56Zr44[24]. To study thermally activated deformation, initial perturbations are introduced to a 

small group of atoms with local connectivity[25], which are then followed by the searching 

algorithm in ART[22] to identify the deformation pathways, including both the saddles states and 

the final states. In order to directly compare the similarities and differences between the 

activation stages and relaxation stages, we use the same model employed in our previous 

study[20]. The size of the simulation box is 32.43Å ×32.43Å×32.43Å, containing 2000 atoms. 

We employ an embedded-atom method (EAM) potential[24], with periodic boundary conditions 

applied to all directions (more details in [26]). To probe the aging history effects on the 

thermally activated deformation, we prepared two starting models with different cooling rates. 

System I is produced by making an instant quench to 0K from the high temperature liquid at 

2000K (~3Tg, where Tg is the glass transition temperature), and therefore represents an unstable 

system. System II is prepared at finite cooling rate (1K/ps) from an equilibrated low temperature 

liquid at 1000K (~1.5Tg) to a glass, and thus represents a relatively more stable system. In total 

around 4,500 distinct deformation pathways have been identified by ART method. No external 
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loads have been applied in the simulation, because the present study concerns thermally activated 

deformation. 

The relations between atomic stress changes and atomic displacements have been 

demonstrated effective in identifying the important atoms during deformation[20, 31]. In this 

study the atomic level stress tensor[32-34] for each atom was calculated at the initial state ( ,i ini
αβσ ), 

the saddle state ( ,i sad
αβσ ), and the final state ( ,i fin

αβσ ), respectively. The stress change for each atom 

at the saddle state and the final state are thus given by , ,( )Δ = −i i sad i inisadαβ αβ αβσ σ σ , and 

, ,( )Δ = −i i fin i inifinαβ αβ αβσ σ σ , respectively. The von Mises stress change for each atom can be 

calculated as, 

( ) ( ) ( ) ( )2 2 211 22 22 33 33 11 2 12 2 23 2 311 6
2

i
VM i i i i i i i i iσ σ σ σ σ σ σ σ σ σ⎡ ⎤Δ = Δ −Δ + Δ −Δ + Δ −Δ + Δ +Δ +Δ⎢ ⎥⎣ ⎦

  

Fig.2.a shows the atomic stress changes and displacements of each atom at the saddle 

state and the final state, for one typical elementary deformation identified by ART. It is observed 

that the vast majority of atoms have only small displacements and stress changes, with a linear 

correlation (solid blue line in Fig.2.a). However, a small number of atoms (outside the shadow 

region in Fig.2.a) exhibit significant deviations, and are the important particles involved in the 

deformation[20, 35]. It can be seen that during deformation, more atoms are involved in the final 

state than in the saddle state. Apparently, in reaching the final state, rearrangements of more 

atoms are necessary to accommodate the relaxation[20, 31]. 
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Figure 2: (a) The relation between the atomic displacements and the stress changes at saddle (green open 
circle) and final (red open circle) states, for a typical deformation process. (b) The distributions of the 
number of involved atoms during activation stage (denoted as “act”) at saddle states, and after relaxation 
stage at (denoted as “rlx”) at final states, respectively. The distributions of two systems are the same at 
saddle states, while at final states SYS-I exhibits a long tail, related with cascades. A typical visualization 
of cascade in SYS-I is shown in [26]. 

The number of important atoms can be measured by removing background fluctuations 

with an appropriate cut-off distance cut
dr shown in Fig.2.a (details in [26]). Fig.2.b shows the size 

distributions of the involved atoms, for all 4,500 saddle states and final states in the two systems. 

During the activation stage (i.e. at the saddle states, denoted as “act” in the legend of Fig.2.b), 

there are only about 5 atoms participated in the STZ triggers (triangles in Fig.2.b), which are 

consistent with the studies by Demkowicz and Argon[31, 36]. More importantly, the size 

distributions in SYS-I and SYS-II are almost identical to each other at the saddle states, 

indicating the deformation triggers are independent of the systems’ cooling histories[20].  

After the relaxation stage (i.e. at the final states, denoted as “rlx” in the legend of Fig.2.b), 

the average size increases to around 17, which is consistent with reported STZs sizes (from 10 to 
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30 atoms) measured in a number of experiments[37-41] and simulations[4, 8, 35, 42, 43]. It is 

worth noting that, the size distributions of SYS-I and SYS-II overlap well at relatively small 

sizes (less than 30 atoms), suggesting a system-independent deformation mechanism in this 

regime.   

On the other hand, very importantly, the size distributions of SYS-I and SYS-II show 

considerable differences at large sizes (greater than 30 atoms). The fast quenched SYS-I displays 

a long-tail distribution (shadowed region in Fig.2.b) up to around 65 atoms, which seems to 

suggest SYS-I is more susceptible to cascades than SYS-II during the relaxation stage. We 

further checked the effects of boundary conditions on the results, and found that constant-

pressure simulations also led to the same behavior (seen in [26]).  

The scaling relations between the barrier heights and the path lengths on PEL can help 

reveal the underlying nature of deformation[44, 45]. It has been demonstrated according to a 

catastrophe theory that, in many-body interacting systems, there exists a universal scaling 

relation, 2~E d , between the local PEL minima and the neighboring saddle states, where E 

represents the barrier height and d is the path length36, 37. Note that for local transitions between 

neighboring sub-basins, according to the symmetry, both the forward barriers (i.e. energy 

differences between the initial and saddle states) and the reverse barriers (i.e. energy differences 

between the final and saddle states) yield the same scaling relation with path lengths. The 

relations between forward barriers and path lengths have been demonstrated to follow the same 

scaling in both SYS-I and SYS-II, indicating the deformation trigger mechanisms (i.e. the 

activation stage) are localized and independent of the system’s thermal history. On the other 

hand, however, the behaviors of the two systems during relaxation stage are significantly 

different.  
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Figure 3: The relations between energy relaxations and maximum atomic displacements (from saddle to 
final states), in SYS-I and SYS-II. The dashed curves represent the scaling relation for localized transition 
predicted by catastrophe theory36, 37, where Erlx refers to the energy relaxation and d refers to the 
displacement. The color of each point is associated with the number of involved atoms, which can be read 
from the color bar on the right side. It can be seen that SYS-II contains only the localized relaxation with 
small size. However, SYS-I includes an extra non-local relaxation mode associated with larger size.  

Fig.3 shows the relations between the energy of relaxation (i.e. energy differences 

between the final and saddle states) and the maximum atomic displacements which represents 

effective path length during the relaxation. Each data point is colored according to the number of 

involved atoms after the relaxation shown in Fig.2.b. It can be seen that most data points in SYS-

I and almost all data points in SYS-II follow the same scaling, 2~E d (Erlx in Fig.3 refers to the 

energy relaxation), indicating a system-independent localized relaxation mode, for the 

deformation associated with sizes smaller than 30 atoms.  
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 However in the fast quenched SYS-I, in addition to the localized mode, there exists 

another branch of relaxation (shadowed region in Fig.3). The extra branch significantly deviates 

from the scaling, 2~E d , and therefore represents a non-local relaxation pattern. Such non-local 

mode in SYS-I leads to larger magnitude of energy relaxation (up to 6 eV) than the localized 

relaxation in SYS-II (less than 2 eV). In addition, the non-local branch in SYS-I is associated 

with larger number of atoms, and exactly corresponds to the long-tail in Fig.2.b. In other words, 

the thermally activated deformation with the sizes larger than 30 atoms is non-localized, and 

seems to include cascade behaviors (note that here the size of 30 atoms is based on metallic glass 

systems, and some quantitative differences might occur for other amorphous materials such as 

oxide glasses, a-silicon, etc). While we believe the non-local events may also exist in SYS-II, 

they are apparently much rarer than in SYS-I so that we did not observe them given the present 

system size. 
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Figure 4: The distributions of energy relaxations (denoted as Erlx in x-axis) in SYS-I (red triangles) and 
SYS-II (green triangles). SYS-II shows an exponential decay over the entire regime, indicating a localized 
relaxation mode. SYS-I shows a mixture of exponential decay (at small energy regime) and power law 
decay (at large energy regime), suggesting a combination of localized and cascade relaxations. Inset: The 
log-log plot for the power law decay in SYS-I. The critical exponent is calculated as 1.6, which represents 
a typical cascade behavior.  

We further calculated the distributions of the energy of relaxation (i.e. energy differences 

between the final and saddle states) in both systems, as seen in Fig.4. In SYS-II, the probability 

shows an exponential decay behavior (blue line), with a characteristic energy relaxation of 

0 0.32 :E eV . As has been noted by Demkowicz, Argon24, 29, and Bailey et al[46], the fast 

exponential decay indicates a localized process, which is well consistent with the analysis above. 

In SYS-I, the distribution at small energy regime shows the similar exponential decay. This is 

because below 2 eV, as seen in Fig.3, the non-local branch does not appear in SYS-I yet. 

However at larger magnitude of energy relaxation, SYS-I shows much slower power-law decay. 

Note that there are only few stochastic data points at very large energy relaxation, which yield 

very small probability in the order of 10-4. These few data points have poor statistics, and thus 

were not used in the power-law fitting, following previous convention[47, 48]. Further analysis 

(inset of Fig.4) provides an exponent of 1.6 for the power-law decay. Such fractal dimension 

suggests a typical self-organized criticality (i.e. cascade behavior), which has been universally 

observed in many different systems[36, 47, 49, 50]. However it is worth noting that, the range of 

log-log plot in the inset of Fig.4 is quite small, and the deduced exponent should be subject to 

further examination for larger systems. 

In glassy materials, when the systems are mechanically driven to the steady state of flow, 

the power-law cascades have been observed from both experiments[51] and simulations[48]. 

However thermally induced cascades seen in SYS-I without external shear, to the best of our 
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knowledge, have not been reported before. We believe the crossover from localized relaxations 

to cascades seen in SYS-I stems from the structure of underlying PEL of the system. In particular, 

the path lengths between neighboring minima on PEL are much shorter in a less stable system 

(SYS-I) than in a more stable system (SYS-II)[20], which consequently yields a much higher 

density of local PEL minima in SYS-I than in SYS-II[14, 20]. This is consistent with recent 

experiments[52], which demonstrated that the density of regions more prone to shear 

deformation is significantly higher in a less relaxed system when comparing with a better 

annealed system. As a result, the higher density of local PEL minima states makes SYS-I more 

susceptible to cascades. Therefore in addition to the localized relaxations with small energy 

drops, sometimes the relaxations can go wild[53] and induce cascades because the neighboring 

PEL minima are too close to each other in SYS-I. This explains the non-local branch in Fig.3 and 

the power-law decay in Fig.4.   

To summarize, the present study investigated the relaxation stages during thermally 

activated deformation in metallic glasses. We observed a localized relaxation mode involving 

around 17 atoms, which is independent of the system’s thermal history. On the other hand the 

fast quenched SYS-I contains an extra relaxation process, which has much larger sizes, involving 

up to 65 atoms. Further analyses demonstrate that the energy relaxation of the extra mode in 

SYS-I exhibits a power-law decay with the exponent of 1.6, close to the value of D/2, where D 

denotes dimension, universally observed in many different avalanche systems[47, 49, 50]. Such a 

power-law suggests a typical self-organized criticality, demonstrating the extra mode in SYS-I is 

essentially a cascade behavior.  

The crossover from localized relaxations to cascades seen in SYS-I originates from the 

underlying PEL structures. SYS-I is more susceptible to cascades because the fast quenched 
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SYS-I has a much higher density of local minima on PEL than the more slowly quenched SYS-

II[20]. Therefore sometimes local deformation in SYS-I can initiate avalanches, involving more 

atoms and yielding a typical cascade behavior. Admittedly, there are new questions remains to be 

answered. For example, when glassy materials are driven under external shear at low 

temperatures[48, 51], only the power-law cascades appear, while the localized relaxations have 

not been observed. Such discrepancy suggests that there are noticeable differences between the 

thermally activated deformation and external shear induced deformation[10, 11, 54], which 

would warrant further studies.  
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