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We have performed simulations of the principal deuterium Hugoniot curve using coupled-electron
ion Monte Carlo. Using highly accurate quantum Monte Carlo methods for the electrons, we study
the region of maximum compression along the Hugoniot, where the system undergoes a continuous
transition from a molecular fluid to a monatomic fluid. We include all relevant physical corrections
so that a direct comparison to experiment can be made. Around 50 GPa we find a maximum
compression of 4.85. This compression is approximately 5.5% higher than previous theoretical
predictions and 15% higher than the most accurate experimental data. Thus first-principles simu-
lations encompassing the most advanced techniques are in disagreement with the results of the best
experiments.

The study of high pressure hydrogen is particu-
larly interesting as progress in the field has come
about from difficult experiments under extreme
conditions and computationally expensive quantum
simulations [1]. Experiments on hydrogen under
high pressure have direct implications for planetary
science: laboratory setups attempt to recreate the
extreme conditions which describe planetary forma-
tion and equilibrium properties of planetary interi-
ors [2–6]. Improvements from both theory and ex-
periment have been essential to creating our current
understanding of the hydrogen phase diagram [7–
10]. A key experimental technique to probe hy-
drogen under extreme conditions is dynamic com-
pression via shock wave generation. The principal
Hugoniot [9–12] is determined by shocking a mate-
rial from an initial state to a state of higher pres-
sure, temperature, and density. The locus of points
reachable in such an experiment, the so-called Hugo-
niot, is determined by conservation laws and ini-
tial conditions. Shock experiments often use deu-
terium instead of hydrogen, because of its higher
number density at ambient pressure, in order to
reach higher density of the shocked state [13–22].
Theoretical methods used so far to investigate this
interesting region of phase diagram are based on
density functional theory (DFT) which is expected

to describe molecular dissociation and metallization
with only limited accuracy. In this work we present
highly accurate quantum Monte Carlo (QMC) re-
sults for the crossover between the molecular liquid
to monatomic liquid along the principal deuterium
Hugoniot. We find that the maximum compression
at the molecular dissociation crossover is 5.5% larger
than previous predictions from DFT.

Among the computational methods used in elec-
tronic structure simulations, QMC is considered
among the highest quality [23–26], with fixed-node
quantum Monte Carlo (FNQMC) being the most
accurate [27–34]. The coupled electron ion Monte
Carlo method (CEIMC) [35–37] uses FNQMC to
determine the electronic ground state energy. The
ionic coordinates are then sampled at a finite tem-
perature from the Boltzmann distribution using
the Born-Oppenheimer energy surface [38–40] de-
termined by FNQMC. We use variational Monte
Carlo (VMC) with DFT orbitals in the electronic
trial wave function, path integral Monte Carlo
(PIMC) to account for the zero point motion of the
ions [41, 42], correlated sampling for calculating en-
ergy differences [43], and reptation quantum Monte
Carlo (RQMC) for calculating unbiased estimators
in FNQMC [28].

Deuterium Hugoniot: Shock experiments are used



to determine the equation of state of a material that
is in an initial state at a known energy, pressure and
volume: (E0,P0,v0). The zeros of the Hugoniot func-
tion H(v, T ) determine the final conditions E,P ,v as

H(v, T ) = e(v, T )−e0 +
1

2
(v−v0)(P (v, T )+P0) = 0

(1)
where v is the atomic volume, e(v, T ) is the in-
ternal energy/atom and P (v, T ) is the pressure.
We assume initial conditions (0.167 g/cm3, 22 K,
1.24×10−4 GPa) in order to compare directly with
some of the previous experiments [13]. We estimated
the initial energy to be e0 =-0.583725 Ha/atom from
the energy of an isolated D2 molecule [44], the es-
timated low temperature binding energy of solid
D2 [45], and integration of the heat capacity [46].
The difference between the principal Hugoniot for
deuterium and hydrogen comes about primarily be-
cause of the differing initial conditions. In this pa-
per, we use atomic units for energies, GPa for pres-
sures and rs units for density where 4πr3s/3 = 1/n
with n is the electron number density in atomic
units. The initial density corresponds to rs = 3.184.

TABLE I. CEIMC-RQMC estimates of the principal
Hugoniot: Pressures, rs, deuterium mass density, com-
pression and temperature

P(GPa) rs ρd(g/cm3) ρd/ρ0 T(103K)

18(1) 2.019(5) 0.654(5) 3.91(3) 4

32(1) 1.909(9) 0.773(9) 4.63(6) 6

39(1) 1.882(3) 0.807(4) 4.83(2) 8

48(1) 1.880(3) 0.810(4) 4.85(2) 10

66(1) 1.895(1) 0.791(2) 4.73(1) 15

To calculate the Hugoniot in the region of interest,
we perform simulations in the range 1.80 ≤ rs ≤ 2.00
and 4000K ≤ T ≤ 15000K. Fitting H(v, T ) at fixed
T to a quadratic polynomial in rs we solve forH = 0.
Our results are shown in Figs. 1 and 2 and Table I.
The main result is the CEIMC-RQMC curve. The
CEIMC-VMC and PBE* predictions are also from
this work and will be discussed later.

Previous theoretical results have been generated
from a variety of different methods which include
DFT, PIMC, and wave packet MD [47–55]. Hugo-
niot curves have been calculated using DFT with the
PBE functional; Several of them are shown in Figs. 1
and 2 (Holst2008 [47], Caillabet2011 [48], and Des-
jarlais2003 [50]). The DFT studies generally show
similar behavior when compared with each other,

0.5 0.6 0.7 0.8
 ρ (g/cm3)

20

30

40

50

60

70

80

P 
(G

Pa
)

Militzer2000
Holst2008
Caillabet2011
CEIMC-VMC
CEIMC-RQMC
PBE*
Knudson2009(exp)
Boriskov2005(exp)

3 4 5
 ρ/ρ

0

FIG. 1. (color online) The principal deuterium Hugo-
niot compared to previous theoretical and experimental
studies. Holst [47] and Caillabet [48] are DFT-PBE sim-
ulations, Militzer [49] is a PIMC simulation. The PBE*
results are generated by solving the Hugoniot equation
using the CEIMC-VMC configurations but computing
energy and pressure with DFT-PBE. Knudson [22] and
Boriskov [14] are experimental results. The initial den-
sity for the Boriskov experiment was ρ0 = 0.171 g/cm3,
slightly higher than for the other Hugoniots. The value
ρ0 = 0.167 has been used in computing the upper rela-
tive compression scale.
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FIG. 2. (color online) Pressure vs temperature along
the deuterium Hugoniot compared to previous theoreti-
cal studies.
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but other methods that involve different approxi-
mations generally do not agree with these results,
especially in the crossover region. For instance, pre-
vious restricted-PIMC calculations [49] with varia-
tional density matrix nodes have significantly differ-
ent behavior.

There are notable differences between previous
DFT predictions and our results. The DFT Hugo-
niot curves consistently show a maximum compres-
sion of ∼ 4.60, but the CEIMC results show a max-
imum compression of ∼4.85. It might be expected
that most DFT functionals would struggle to cap-
ture the physics of this crossover, as the energies of
bond breaking of just two hydrogen atoms (or deu-
terium atoms) are poorly described with many den-
sity functionals such as PBE. However, it is not clear
that this is the origin of the discrepancy since the
average distance between hydrogen atoms at these
pressures is smaller than needed to break the hydro-
gen bond.

There has been extensive experimental work in
measuring the Hugoniot for deuterium [13–22, 56–
58] and hydrogen [58–62]. Experimental data from
refs. [14, 22] are plotted for the Hugoniot in Fig.
1. The CEIMC, Knudson and Caillabet results all
suggest as maximum compression at 40GPA, where
as the Militzer and Boriskov data suggest a maxi-
mum compression above 100 GPA. The experimen-
tal results disagree with our Hugoniot points by
three standard deviations at temperatures 8K and
10K, in the region of maximum compression. Over-
all the experimental results are systematically less
compressed than our theoretical prediction. Since
we believe our theoretical results take into account
all relevant sources of error, this suggests there are
some systematic errors in the experimental results.

Evidence of the bond-breaking crossover is given
in Fig. 3 where we present the radial distribution
function between ions along the Hugoniot. The min-
imum temperature at which we observe the breaking
of molecules is density dependent. At the highest
density in this work rs = 1.80, a small increase in
the temperature over 4000K causes a transition to
the monatomic phase whereas in the lowest density
systems rs = 2.00, the crossover does not occur un-
til the system is above 10000K. Using our PBE* re-
sults (the details are discussed below), we see a clos-
ing of the electronic band gap in going from 6000K
to 8000K along the Hugoniot curve, signaling what
is likely to be a continuous crossover to a metallic
state [47].
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FIG. 3. (color online) Ion-Ion radial distribution func-
tion, gdd(r), near the Hugoniot line. The large peak for
1 < r < 2 signals the presence of bonded atoms and indi-
cates the majority of the atoms are bound into molecules
at 4000K. This peak nearly disappears as the system be-
comes a monatomic liquid at 8000K, although a small
feature remains. The ion-ion distribution function at T
= 10,000K overlaps almost entirely with the T=15,000K
curve. Inset: The Hugoniot function plotted at 8000K,
for CEIMC-RQMC and DFT-PBE.

Method: We now discuss the details of the method
used in the simulations. It is crucial that the QMC
electronic structure calculations are performed with
accurate trial wave functions. These have a single
Slater determinant for each spin component and a
correlation part with single, two and three body
Jastrows. We use DFT-PBE Kohn-Sham orbitals
in the Slater determinants [63]. They are recalcu-
lated as the ions move. The backflow transforma-
tion is applied to those orbitals. Analytical expres-
sions from the random phase approximation (RPA)
for both correlation and backflow functions are em-
ployed [35, 64–66] which exactly enforce the cusp
conditions between all pairs of charges as well as the
correct long-wavelength behavior of the charge os-
cillations. These are complemented by empirical ex-
pressions, with a few variational parameters [35, 65].
To mitigate the computational effort we optimize the
wave function parameters over an ensemble of statis-
tically independent configurations at thermal equi-
librium for each given density. We find that using
this form of the wave function yields energies within
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1 mHa/atom of a full optimization of each configu-
ration individually.

TABLE II. Energy differences (mHa/atom) between
CEIMC-RQMC and CEIMC-VMC at various densities
and temperatures. The ”Avg Err” is the mean abso-
lute error (MAE) of the energies over configurations,
and ”Rel Err” is the MAE between configurations af-
ter the energies have been shifted by the average energy
difference of the entire set. Configurations are sampled
with CEIMC-VMC; the CEIMC-RQMC energy differ-
ences are calculated from a set of 100 configurations.

Avg Err rs 4000(K) 6000 8000 10000 15000

1.8 2.7(3) 3.2(3) 3.4(3) 3.6(3) 4.1(3)

1.85 3.0(3) 3.2(3) 3.6(3) 3.8(3) 4.5(3)

1.9 3.2(3) 3.5(3) 3.9(3) 4.5(3) 4.6(3)

Rel Err rs 4000(K) 6000 8000 10000 15000

1.8 0.16(1) 0.21(2) 0.27(2) 0.34(3) 0.42(3)

1.85 0.18(2) 0.22(2) 0.19(2) 0.32(2) 0.48(3)

1.9 0.16(2) 0.24(3) 0.28(5) 0.33(5) 0.44(4)

Our simulations consist of 54 ions and 54 electrons
at fixed volume and temperature. CEIMC runs are
performed with energy differences from VMC. To
demonstrate the quality of our wave function we se-
lect statistically independent configurations gener-
ated during the CEIMC run and compare VMC with
RQMC energies, as shown in Table II.

In order to calculate an accurate Hugoniot the er-
rors in the energy and pressure need to be consistent
across densities for a given temperature. This con-
sistency is apparent in our data for all the tempera-
tures considered in this work. Just as important, the
largest discrepancy is less than 1 mHa/atom, which
is small enough as to not influence the results more
than the final error bars on our calculated Hugoniot
curves.

Also we report relative energy errors in Table II.
The relative energies between configurations is an
indicator of whether we are sampling an accurate
thermal distribution for the ions. Table II shows
that these relative energy differences are significantly
less than 1 mHa/atom. To test the quality of our
sampled distribution, we used reweighting [67] at
8000K for rs=1.85,1.90 over 1500 nuclear configu-
rations. This resulted in an efficiency of 0.5 which
suggests a large enough overlap between the RQMC-
generated and VMC-generated ionic distributions to
trust the results.
Approximations and corrections: Due to the na-

ture of these simulations, several other approxima-

tions enter beyond the electronic structure. Single
particle finite size effects can be accounted for by
using twisted boundary conditions [68]. We used a
fixed grid of (4 × 4 × 4) twisted angles. The many
body finite size effects can be estimated [69, 70]
by extrapolating the small wave length limit of the
charge-charge structure factor Sqq(k). The cor-
rections comprises a kinetic energy contribution,
∆K = 3/

√
16 r3s , and a potential energy contribu-

tion ∆V = 3 r−3s limk→0

[
Sqq(k)/k2

]
. Corrections

to the pressure are accounted for using the virial ex-
pression [71], ∆P = [(2 ∆K + ∆V )ρ] /3.

Corrections from electronic thermal effects are es-
timated using DFT-PBE. Given a set of represen-
tative configurations from CEIMC, we computed
the DFT energy with a smearing of the electronic
density over an ensemble of single particle orbitals
weighted by the Fermi-Dirac distribution. Once the
energies and pressures have been calculated in DFT,
there are two types of corrections that could be ap-
plied. First, the thermal DFT energy and pres-
sure corrections can be added in directly to cor-
rect our QMC energies and pressures. We calculated
these effects on 50 configurations for each tempera-
ture/density considered in this work and observed
no effect within our error bars. The second cor-
rection involves reweighting the configurations with
the electronic entropy term to incorporate the ef-
fects of using the Mermin finite temperature func-
tional [72]; We tested this at 8000K and observed no
effect within our error bars. It is not clear in whether
including these thermal corrections improve our es-
timates, as both the DFT band gaps and pressures
are important in determining thermal effects. The
problems with DFT band gaps is well studied [73–
76], and below we show that the DFT pressure errors
are significant.

Nuclear quantum effects can be explicitly taken
into account in CEIMC by replacing the “classical”
charge, with a dynamic deuteron using PIMC for
the deuterons. Note that at the temperature of this
study it is not necessary to consider the effect of the
deuteron’s spin. We consider the deuterons as dis-
tinguishable quantum particles. However, because
the temperatures considered here are high and such
calculations are computationally more expensive, we
did such PIMC simulations at only two densities
(rs = 1.80, 2.00) and at T=8000K. We found no ef-
fect on the energies and pressures within our error
bars. Further we have estimated the nuclear quan-
tum effects at T=4000K using the molecular zero
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point energy h̄ω0/2 with ω0 fitted to the observed
bond distribution [47]. Corrections to the energy
and pressure are significant at this lower tempera-
ture but the global effect on the Hugoniot is within
the error bars.

To increase the accuracy of our predictions, we
add in the RQMC energy and pressure as a correc-
tion to our CEIMC-VMC results. RQMC calcula-
tions of the energy and pressure are extrapolated to
infinite projection time (β) and zero time step (∆τ).

TABLE III. Pressure errors of VMC and PBE estimated
using RQMC. Configurations are sampled with CEIMC-
VMC and the PBE* and RQMC pressure differences are
calculated from them. Shown are MAE in GPa. The
unit KK stands for 103 Kelvin.

rs 8KK-VMC 10KK-VMC 8KK-PBE* 10KK-PBE*

1.8 2.8(2) 2.8(2) 6.4(2) 6.3(2)

1.85 2.3(2) 2.7(2) 3.1(2) 3.7(2)

1.9 2.7(2) 3.6(2) 6.1(3) 5.7(3)

TABLE IV. Energy errors of VMC and PBE estimated
using RQMC. Configurations are sampled with CEIMC-
VMC and the PBE* and RQMC energy differences are
calculated from them. Shown are MAE in mHa/atom.
The unit KK stands for 103 Kelvin.

rs 8KK-VMC 10KK-VMC 8KK-PBE* 10KK-PBE*

1.8 3.4(3) 3.6(3) 4.0(3) 3.7(3)

1.85 3.6(3) 3.8(3) 3.6(3) 4.2(3)

1.9 3.9(3) 4.5(3) 4.2(3) 3.5(3)

Finally we describe a test we used to determine the
origin of the differences between the DFT-PBE and
CEIMC simulations. The CEIMC simulations use a
VMC calculation of the energy to generate configu-
rations. We use these configurations to identify how
the DFT-PBE functional behaves differently from
QMC, keeping the finite size corrections and the
thermal corrections fixed. PBE calculations were
performed without any pseudopotential but with a
sufficiently high plane wave cutoff (500 Ry) to con-
verge the energies and pressures. The PBE calcula-
tions were done at zero temperature with the same
k-point sampling used for our QMC twist averaging.
With this data we recalculated the Hugoniot. The
results are shown in the Figs. 1 and 2 as PBE*. We
are most interested in the temperatures at 8000K
and 10000K where our CEIMC calculations exhibit
the largest compression. The PBE* curve at both
these temperatures are less compressed (4.6), than

our VMC/RQMC results. We can understand this
result by considering the energy and pressure errors
in Table III and Table IV. The VMC and PBE* en-
ergy errors are actually quite close, and consistently
agree within error bars for this part of the phase
diagram. A trace of the energies for the individual
configurations suggests that the two methods gen-
erate very similar, though not identical, ionic con-
figurations. The change in the PBE* curve mainly
comes from errors in the pressure as shown in Ta-
ble III. These pressure errors are in many cases more
than twice as large as the VMC and their magnitude
fluctuates significantly at different densities. This is
in comparison to the VMC pressure errors which are
not only smaller, but also consistent with the energy
errors giving similar values for the VMC and RQMC
Hugoniot functions. A comparison of PBE* and the
RQMC Hugoniot functions are plotted in the inset
of Fig. 3.

Discussion/Conclusions: In this work we have
performed a calculation along the principal Hugo-
niot of deuterium as the molecular fluid transforms
into mono-atomic fluid. Our results show that deu-
terium is more compressible than estimated on the
basis of previous DFT-PBE simulations. A large
part of the difference arises from errors in the DFT
pressures, and both energy and pressure errors be-
come more significant at temperatures below 8000K.
This represents one of the first works for dense deu-
terium in which all the relevant physical effects were
taken into account without the possibility for any
large uncontrolled errors. Our results suggest that
there are systematic errors in the experimental re-
sults that remain to be resolved in future experi-
ments.
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