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We propose and characterize a new Z2 class of topological semimetals with a vanishing spin–orbit
interaction. The proposed topological semimetals are characterized by the presence of bulk one-
dimensional (1D) Dirac Line Nodes (DLNs) and two-dimensional (2D) nearly-flat surface states,
protected by inversion and time–reversal symmetries. We develop the Z2 invariants dictating the
presence of DLNs based on parity eigenvalues at the parity–invariant points in reciprocal space.
Moreover, using first-principles calculations, we predict DLNs to occur in Cu3N near the Fermi
energy by doping non-magnetic transition metal atoms, such as Zn and Pd, with the 2D surface
states emerging in the projected interior of the DLNs. This paper includes a brief discussion of
the effects of spin–orbit interactions and symmetry-breaking as well as comments on experimental
implications.

A recent development in condensed matter physics has
been the discovery of semimetallic features in electronic
band structures protected by the interplay of symme-
try and topology. A tremendous amount of progress has
been made in materials with strong spin–orbit interac-
tions, such as the surface states of topological insulators
[1, 2] and topological crystalline insulators [3], as well as
the gapless bulk states of Weyl and Dirac semimetals [4–
6]. Related topological phenomena can occur in materials
with vanishing (or weak) spin–orbit interactions [7]. In-
deed, the prototypical topological semimetal is graphene
[8], which exhibits Dirac points that are robust to the ex-
tent that the spin–orbit interaction in carbon is weak. In
the absence of spin–orbit interactions, the Dirac points in
graphene are topologically protected by the combination
of inversion and time–reversal symmetries.

In this paper we study a related phenomenon for three
dimensional (3D) materials with weak spin–orbit inter-
action. We show that the combination of inversion
and time–reversal symmetries protects Dirac line nodes
(DLNs), for which the conduction band and valence band
meet along a line in momentum space, and we predict re-
alistic materials in which they should occur. DLNs have
been discussed previously in the context of models that
have an additional chiral symmetry [9, 10], which can
arise on a bipartite lattice with only nearest neighbor
hopping. In this case, the DLN can be constrained to
occur at zero energy [11]. However, chiral symmetry is
never expected to be an exact symmetry of a band struc-
ture. We will show that despite the absence of chiral
symmetry, the line node is protected, though it is not
constrained to sit at a constant energy. We will show,
however, that in the vicinity of a band inversion tran-
sition, a DLN can occur in the form of a small circle,
whose energy is approximately flat. The presence of such
a Dirac circle has interesting consequences for the surface
states, and we show that on the projected interior of the
Dirac circle, the surface exhibits a nearly flat band, which

must be half–filled when the surface is electrically neu-
tral. Such surface states could be an interesting platform
for strong correlation physics [12]. We introduce a class of
materials and use first–principles density functional the-
ory (DFT) calculations to show that they can be tuned
through the band inversion transition and exhibit the
predicted Dirac circle, as well as a more complex nodal
structure. A similar DLN has recently been predicted
in graphite [13, 14], a hyper-honeycomb lattice [15], and
3D carbon allotropes [16, 17]. Recently, DLNs also have
been proposed in systems, with strong spin-orbit inter-
actions, such as perovskite irridates [18, 19] and non-
centrosymetric semimetals [20], but in those systems the
mechanism of symmetry protection is different.

We will begin by elucidating the topological constraints
that inversion and time–reversal symmetries impose. We
will then introduce a Z2 topological invariant (related
to the invariant characterizing a 3D topological insu-
lator) which signifies the presence of DLNs. We will
then present DFT calculations on transition metal–doped
Cu3N that predict a Dirac circle, as well as nearly-flat
boundary modes. We will then introduce a simple low–
energy k · p model that explains the appearance of the
Dirac circle at a band inversion, and allows for a simple
description of the resulting boundary modes.

Consider a 3D Bloch Hamiltonian H(k) that is invari-
ant under inversion P and time–reversal T . In the ab-
sence of spin–orbit interactions we may consider T 2 =
+1. The occupied Bloch eigenstates are characterized
by a Berry connection A(k) = −i

∑
n〈un(k)|∇kun(k)〉.

P and T symmetries constrain the Berry phase, ω(C) =
exp i

∮
C
A·dk, on any closed loop C in momentum space,

to satisfy ω(C) = ω(−C) and ω(C) = ω(−C)∗, respec-
tively. It follows that loops C are characterized by a Z2

topological invariant ω(C) = ±1 [21]. The non–trivial
loops ω(C) = −1 must enclose a degeneracy. In two di-
mensions, this explains the symmetry protection of the
Dirac points in graphene. In three dimensions, it guar-
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antees that a line of degeneracies must pierce any surface
bounded by C.

The parity eigenvalues ξn(Γa) = ±1 of the occupied
Bloch states at the 8 parity–invariant momenta Γa pro-
vide an important constraint that allows us to identify
topologically protected line nodes. First, consider a time-
reversal invariant loop Cab = cab − c̄ab that connects Γa
and Γb along two time–reversed paths cab and c̄ab. In the
supplementary material we prove that the Berry phase
on this loop satisfies

ω(Cab) = ξaξb; ξa =
∏
n

ξn(Γa). (1)

If we now consider four parity-invariant points, the con-
tour Cab − Ccd defines the boundary ∂Sabcd of a surface
Sabcd in momentum space. The Berry phase on ∂Sabcd
counts the number of DLNs N(Sabcd) that pierce that
surface. We thus conclude that

(−1)N(Sabcd) = ξaξbξcξd. (2)

Thus, when ξaξbξcξd = −1 there must be an odd num-
ber of DLN piercing any surface Sabcd, with the simplest
case being just a single one. This relation is quite similar
to the topological invariants (ν0; ν1ν2ν3) characterizing a
(strong or weak) Z2 topological insulator in the presence
of spin–orbit interactions [22, 23]. Indeed, in a topolog-
ical insulator with ξaξbξcξd = −1 , when the spin–orbit
interaction is turned off a DLN must appear, because the
system can not be adiabatically connected to a trivial in-
sulator.

This connection to the parity eigenvalues suggests a
route towards realizing the DLNs: Starting with a triv-
ial insulator, invert a pair of opposite-parity bands. At
the inversion transition a small Dirac circle will necessar-
ily emerge and grow. In the following we will predict a
class of real materials which exhibits this behavior, and
analyze the low–energy structures which emerge.

Searching for materials that consist of light elements
and preserve T and P symmetries, we find that copper ni-
tride, Cu3N, a narrow–gap semiconductor (Eg ∼ 0.3 eV)
[24], fosters DLNs near the Fermi level via an insulator–
to–metal transition driven by doping transition metal
atoms. Copper nitride, first synthesized in 1939 [24],
is stable in air at room temperature with a cubic anti–
ReO3 structure in space group 221 (Pm3̄m). It contains
a rather large void at the center of the cubic unit cell,
as shown in Fig. 1. This void can host extrinsic atoms
such as N [25], Li [26, 27], Pd [28–32], Rh, Ru [32], Zn,
Ni, Cd [28], Cu [27, 33], Fe, Ti [34], Ag [35], La, Ce [36],
as well as many other transition–metal atoms [37]. In
particular Ni, Cu, Pd, An, Ag, and Cd [28] are found to
drive an electronic transition in Cu3N into a semimetal
without breaking T symmetry [37], by which we expect
that DLNs form near the Fermi energy.

To demonstrate the existence of DLNs in the transi-
tion metal–doped Cu3N, we perform first–principles cal-
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FIG. 1. Crystal structure of Cu3NX. X represents a transition
metal atom intercalated at the body–center of the cubic unit
cell of Cu3N in an anti–ReO3 structure.

culations based on DFT. We employ the Perdew–Burke–
Ernzerhof–type generalized gradient approximation [38]
as implemented in the QUANTUM ESPRESSO pack-
age [39]. Norm–conserving, optimized, designed nonlocal
pseudopotentials are generated by the OPIUM package
[40, 41]. The wave functions are expanded in a plane–
wave basis with an energy cutoff of 680 eV. We initially
consider the spin–orbit interaction based on a scalar–
relativistic pseudopotential [42], and later, we will dis-
cuss the effect of spin–orbit interactions, based on a fully-
relativistic non–collinear scheme.

The low–energy electronic structures of Cu3NX are
more or less similar for X = {Ni, Cu, Pd, An, Ag, Cd},
as reported in Ref. [28]. Here we present the results
of Cu3NZn and Cu3NPd as representatives of transition
metal–doped Cu3N systems. Note that these are ex-
treme cases where the transition metal atoms are maxi-
mally doped [43]. In Cu3NZn the conduction and valence
bands are mainly comprised of conduction A2u and va-
lence A1g states near the Fermi energy. As shown in Fig.
2, these bands are inverted at the X points, forming two–
dimensional (2D) Dirac points on the X–M and R–X
lines (enclosed by red circles in the figure). These Dirac
points signal the presence of a DLN enclosing X. Al-
though there are more degenerate points near the Fermi
level, and bands crossing the Fermi energy near the R
point, we will simplify and here focus only on the bands
near X. On the other hand, the conduction and valence
bands of Cu3NPd are comprised of T2g and T1u states,
which are inverted at the R point, forming the Dirac
points on the R–X and M–R lines. These Dirac points
are in fact parts of a DLN that encloses the R point, as
shown below.

The nodal lines of the conduction and valence bands
in the 3D BZ are shown in Fig. 3. As mentioned above,
DLNs appear near the X points in the Cu3NZn system.
The cubic symmetry of the system dictates three DLNs
encircling the three inequivalent X points Xr = πr̂/a,
where r = x, y, and z. Similarly, Cu3NPd also exhibits
three DLNs due to the cubic symmetry, but since they
appear enclosing the R point, they form in a gyroscope
shape. In both systems, the DLNs are contained in three
mirror-invariant planes at Xx, Xy, and Xz, due to the
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FIG. 2. (color online) Electronic structures and Z2 indices
of (a) Cu3NZn and (b) Cu3NPd. Bands are drawn along the
high–symmetry lines of the BZ (inset). The Dirac points are
indicated by red circles. Parity eigenvalues are illustrated at
the eight parity–invariant points in the first octant of the BZ.

corresponding mirror symmetries. We expect that break-
ing the mirror symmetries should unlock the DLNs from
the mirror planes, but that the DLNs will survive as they
are protected by P and T .

The appearance of DLNs agrees with the topologi-
cal prediction of Z2 invariants (ν0; ν1ν2ν3), calculated
from the parity analysis. In Cu3NZn, parities at the
eight time–reversal invariant momenta (Γ, 3X, 3M,R)
give (ν0; ν1ν2ν3) = (1; 111), which dictates that there
should be DLNs threading half the invariant plane at
Xr = πr̂/a (r = x, y, z) an odd number of times. The
three DLNs enclosing the X points fulfill this topologi-
cal constraint (see the supplementary material for more
details of this analysis). Similarly, in Cu3NPd we find
that (ν0; ν1ν2ν3) = (1; 111), which is also in accordance
with the formation of the three DLNs enclosing R. In
this case, each invariant plane at Xr is threaded three
times by all three DLNs.

A low–energy k ·p Hamiltonian describing the conduc-
tion A2u and valence A1g states, which form the DLNs
in Cu3NZn, captures the essential features of the DLNs.
Near Xr, symmetries dictate a two–band Hamiltonian

Hr = (ε̄+a⊥|q⊥|2+arq
2
r)Iτ+vqrτ

y+(∆ε+b⊥|q⊥|2+brq
2
r)τz,
(3)

where q = k−Xr, ⊥ represents the normal components
to r̂, and the Pauli matrices {Iτ , τ i} describe the A1g

and A2u states. The form of Hr is uniquely determined
by inversion P = τz and time–reversal T = K (K being
complex conjugation), together with the D4h point group
symmetries of X. It gives energy eigenvalues

E±(q) = ε̄+ a⊥|q⊥|2 + arq
2
r

±
√

(∆ε+ b⊥|q⊥|2 + brq2r)2 + v2q2r . (4)
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FIG. 3. (color online) Dirac line nodes in the Brillouin Zone
(BZ). (a) and (b) Cu3NZn, and (c) and (d) Cu3NPd. The
DLNs are illustrated by red curves in the 3D BZ [(a) and (c)]
and on the 2D boundary plane of the BZ at k = Xx [(b) and
(d)].

A DLN forms at qr = 0 and |q⊥|2 ≡ q20 = −∆/b⊥, when
the bands are inverted (∆ε < 0). The DFT results de-
termine ∆ε ∼ −0.4 eV. In Cu3NPd, unlike in Cu3NZn,
there are conduction T2g and valence T1u states, instead
leading to a six–band Hamiltonian H. However, this can
be decomposed into three copies of Hr with r = x, y, and
z and H = Hx⊕Hy⊕Hz, giving rise to three gyroscope–
shaped DLNs. Therefore, the essential features of the
DLNs should be the same between Cu3NZn and Cu3NPd,
aside from the former having a single DLN occurring in
three inequivalent valleys of the BZ (X points) and the
latter having three DLNs in a single valley (R point).

This model Hamiltonian also describes boundary
modes. Consider a boundary perpendicular to r̂ in which
∆ε varies between a negative (inverted) value and a large
positive value. Fixing q⊥ and considering the theory to
linear order in qr → −i∂r,

Hz(q) = −ivτy∂r+(∆ε(r)+b⊥q
2
⊥)τz+(ε̄+a⊥q

2
⊥)Iτ . (5)

For each k⊥ this defines a Jackiw–Rebbi problem [44].
When ∆ε+ b⊥k

2
⊥ < 0 there will be a boundary mode at

the surface. In general the boundary band is not flat, but
disperses for k⊥ < kF

ε0(k⊥) = ε̄+ a⊥k
2
⊥ ≤ 0. (6)

If a = 0 however, the surface band is flat. This reflects
an additional chiral symmetry {H, τx} = 0 at this point.
In this model, the value of a is related to the difference
of the effective masses of the A1g and A2u bands. If the
surface in the absence of inversion is electrically neutral,
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FIG. 4. (color online) Two–dimensional surface electronic
structure for Cu3NZn. (a) First octant of three–dimensional
Brillouin zone (BZ) of Cu3NZn projected onto the two–
dimensional surface BZ of the (100) surface and (b) surface
electronic band structure. The Dirac line nodes (DLNs) and
the projected interior of DLNs are illustrated with the red
and blue schemes, respectively. The slab bands are shown
in black lines and surface states in the enclosed region are
shown in blue lines. The shaded region represents bulk bands
projected onto the BZ of the (100) surface along kx .

then after inversion the surface will be neutral when the
surface band is half–filled. This leads to a narrow surface
band, where electron density q20/4π = |∆ε|/4πb⊥ is con-
trolled by the degree of band inversion. In the absence of
screening from other bands, this surface band will tend
to be pinned at the Fermi energy.

To study the surface states in Cu3NZn, we calculate
the band structures of a slab geometry with 40 unit cells,
exposing the (100) Cu2N surfaces to vacuum. Our calcu-
lation from first principles predicts that nearly-flat sur-
face states emerge in the interiors of projected DLNs
connecting the Dirac nodes, as shown in Fig. 4. The
slab band structure exhibits the weakly-dispersing sur-
face states near Γ̄ in the projected interior of the DLN.
The topological surface states resulting from closed DLNs
are half–filled and nearly flat, providing a unique venue
for interesting strong-correlation and transport physics.

The strong spin–orbit interaction can induce diverse
topological phases in DLN semimetals, including topolog-
ical insulators, 3D Dirac semimetals [5, 45, 46], or even
other DLN semimetals [19]. Analogously to graphene,
spin–orbit interaction can gap out DLNs and drive the
system to a topologically-insulating phase. The resultant
topological insulator should have the same topological Z2

indexes as the DLN semimetal from which it originated.
More interestingly, an additional crystalline symmetry
may protect a part of the DLN in a symmetry-invariant
region of the BZ, resulting in topological Dirac semimet-
als or crystalline symmetry–protected DLNs with strong
spin–orbit interactions. We have tested the effect of spin–
orbit interaction in Cu3NPd using a fully-relativistic
non–collinear scheme, and indeed found that C4 sym-
metry along the R–M line protects the Dirac point on
the line, while the spin–orbit coupling otherwise opens a
gap (with maximum size of ∼ 62 meV on the R–X line),
thus giving rise to a 3D Dirac semimetal phase in a strong

spin–orbit interacting regime. Note that Cu3NPd is an
extreme case where Pd is maximally doped, and thus
the spin–orbit interactions due to Pd 4d states are max-
imized. The spin–orbit interaction can be controlled ei-
ther by the Pd–doping concentration, or by doping other
group-X transition-metal atoms, such as Ni, Pd, and Pt.
We thus expect both the DLN semimetal and 3D Dirac
semimetal phases should be accessible in the Cu3N sys-
tem.

In summary, we have demonstrated that the combi-
nation of inversion and time–reversal symmetries allows
for the Z2 classification of topological semimetals under
vanishing spin–orbit interactions. The proposed topolog-
ical semimetals are characterized by the presence of bulk
DLNs and nearly-flat surface states, protected by inver-
sion and time-reversal symmetries. Our first–principles
calculations predict that the proposed topological phase
can be observed in Cu3N by doping with a class of non-
magnetic transition metal atoms X, where X = {Ni,
Cu, Pd, Ag, Cd}. The 2D surface states predicted for
the DLN semimetal can hopefully be experimentally ob-
served through, for example, ARPES in Cu3NXx, using
the doping concentration x as a knob to control the sizes
of the closed DLN and the enclosed surface band. Dop-
ing with heavier atoms can also be used to potentially
observe spin–orbit-induced topological phases.

While this manuscript was in the final stages of prepa-
ration we learned of recent work proposing DLN in Ca3P2

[47]. YK acknowledges support from NSF grant DMR–
1120901. CLK acknowledges support from a Simons In-
vestigator grant from the Simons Foundation. AMR ac-
knowledge support from the DOE Office of Basic Energy
Sciences, under grant number DE–FG02–07ER15920.
Computational support is provided by the HPCMO of
the U.S. DOD and the NERSC of the U.S. DOE.

[1] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045
(2010).

[2] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057
(2011).

[3] L. Fu, Phys. Rev. Lett. 106, 106802 (2011).
[4] X. Wan, A. M. Turner, A. Vishwanath, and S. Y.

Savrasov, Phys. Rev. B 83, 205101 (2011).
[5] S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J.

Mele, and A. M. Rappe, Phys. Rev. Lett. 108, 140405
(2012).

[6] J. A. Steinberg, S. M. Young, S. Zaheer, C. L. Kane, E. J.
Mele, and A. M. Rappe, Phys. Rev. Lett. 112, 036403
(2014).

[7] A. Alexandradinata, C. Fang, M. J. Gilbert, and B. A.
Bernevig, Phys. Rev. Lett. 113, 116403 (2014).

[8] Castro Neto, A. H. and Guinea, F. and Peres, N. M. R.
and Novoselov, K. S. and Geim, A. K., Rev. Mod. Phys.
81, 109 (2009).
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