aps CHCRUS

physics

This is the accepted manuscript made available via CHORUS. The article has been
published as:

Universal Wave-Function Overlap and Universal Topological
Data from Generic Gapped Ground States
Heidar Moradi and Xiao-Gang Wen
Phys. Rev. Lett. 115, 036802 — Published 14 July 2015
DOI: 10.1103/PhysRevlLett.115.036802


http://dx.doi.org/10.1103/PhysRevLett.115.036802

Universal Wave Function Overlap and
Universal Topological Data from Generic Gapped Ground States

Heidar Moradi' and Xiao-Gang Wen' 2

L Perimeter Institute for Theoretical Physics, Waterloo, Ontario, N2L 2Y5 Canada
2 Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
(Dated: June 19, 2015)

We propose a way — universal wave function overlap — to extract universal topological data from
generic ground states of gapped systems in any dimensions. Those extracted topological data might
fully characterize the topological orders with gapped or gapless boundary. For non-chiral topological
orders in 241D, this universal topological data consist of two matrices, S and T, which generate a
projective representation of SL(2,Z) on the degenerate ground state Hilbert space on a torus. For
topological orders with gapped boundary in higher dimensions, this data constitutes a projective
representation of the mapping class group MCG(M?) of closed spatial manifold M?. For a set of
simple models and perturbations in two dimensions, we show that these quantities are protected to
all orders in perturbation theory. These overlaps provide a much more powerful alternative to the
topological entanglement entropy and allow for more efficient numerical implementations.

Since the discovery the fractional quantum Hall effect
(FQHE)[1, 2] and theoretical study of chiral spin liquids,
[3, 4] it has been known that new kind of orders beyond
Landau symmetry breaking orders exist for gapped states
of matter, called topological order. [5, 6] Topological or-
der can be thought of as the set of universal properties
of a gapped system, such as (a) the topology-dependent
ground state degeneracy [5, 6] and (b) the non-Abelian ge-
ometric phases S and T of the degenerate ground states
[7-9], which are robust against any local perturbations
that can break any symmetries. [6] This is just like su-
perfluid order which can be thought of as the set of uni-
versal properties: zero-viscosity and quantized vorticity,
that are robust against any local perturbations that pre-
serve the U(1) symmetry. It was proposed that the non-
abelian geometric phases of the degenerate ground states
on the torus classify 241D topological orders. [7]

Interestingly, it turns out that non-trivial topological
order is related to long-range quantum entanglement of
the ground state [10]. These long-range patterns of en-
tanglement are responsible for the interesting physics,
such as quasiparticle excitations with exotic statistics,
completely robust edge states, as well as the univer-
sal ground state degeneracy and non-Abelian geometric
phases mentioned above.

Our current understanding is that topological order in
2+1 dimensions is characterized by a unitary modular
tensor category (UMTC) which encode particle statistics
and gives rise to representations of the Braid group, [11]
and the chiral central charge c_ which encode informa-
tion about chiral gapless edge states. [12, 13]

While the algebraic theory of 2+1D topological order
is largely understood, it is natural to ask whether it is
possible to extract topological data from a generic non-
fixed point ground state. One such proposal has been
through using the non-Abelian geometric phase S and T'.
[7-9, 14-17] Another is using the entanglement entropy
[18, 19] which has the generic form in 241 dimensions

S =aL —~+0(1), where 7 is the topological entangle-
ment entropy (TEE). It turns out that v = log D, where
D is the total quantum dimension and thus a universal
topological property of the gapped phase. A generaliza-
tion of TEE to higher dimensions was proposed in [20].

Here, we would like to propose a simple way to ex-
tract data from non-fixed point ground states, that could
potentially fully characterize the underlying TQFT. We
conjecture that for a system on a d-dimensional manifold
M? of volume V with the set of degenerate ground states
{|Ya)}N_;, the overlaps of the degenerate ground states
have the following form [21, 22]

(Va|Oalthg) = eV ToW/V) ppet (1)

where Oy, labeled by index A, are transformations of
the wave functions induced by the automorphism trans-
formations of the space M — M?, « is a non-universal
constant, and M4 is an universal unitary matrix (upto
an overall U(1) phase). M# form a projective repre-
sentation of the automorphism group of the space M¢
— AMG(M?), which is robust against any perturbations.
We propose that such projective representations for dif-
ferent space topologies are universal topological data and
that they might fully characterize topological orders with
finite ground state degeneracy. The disconnected com-
ponents of the automorphism group is the mapping class
group: MCG(M?) = mo[AMG(M?)]. We propose that pro-
jective representations of the mapping class group for dif-
ferent space topologies are universal topological data and
that they might fully characterize topological orders with
gapped boundary. (For a more general and a more de-
tailed discussion, see Ref. [22].) For some more intuition
behind our conjecture, we refer to the supplemental ma-
terial.

For a 2D torus 7?2 the mapping class group MCG(T?) =
SL(2,Z) is generated by a 90° rotation S and a Dehn
twist 7. The corresponding M4 are the unitary matri-
ces S, T which generate a projective representation of



SL(2,7Z). Compared to the proposal in Ref. [7-9], here
we do not need to calculate the geometric phase for a
family of ground states and only have to consider a much
simpler calculation — a particular overlap (with the cost
of a non-universal contribution with volume scaling). We
will calculate this for the simple example of Zy topolog-
ical state studied in Refs. [23-27] and investigate the
universality of this under perturbations such as adding
string tension.

We note that a UMTC that describe the statistics of
the excitations in 2 4+ 1D, can also gives rise to a pro-
jective representation of SL(2,Z). We propose that the
universal wave function overlap eqn. (1) computes this
projective representation. The representation is gener-
ated by two elements S and T satisfying the relations

27mi

(ST =es-C, S*=C, (2)

where C' is a so-called charge conjugation matrix and
satisfy C? = 1. Furthermore we have that > d26, =

2mi

e’s °=, where d, and 0, are the quantum dimension and
topological spin of quasiparticle a, respectively. This
shows that the UMTC, or particle statistics, fixes the chi-
ral central charge mod 8. This constitutes a projective
representation of SL(2,Z) on the groundstate subspace
on a torus, which encode how the groundstates trans-
form under large automorphisms MCG(7T?). We believe
that our higher dimensional universal quantities (1) also
encode information about the topological order in the
ground state.

Construction of degenerate set of ground states from
local tensor networks: Since topological order exist
even on topologically trivial manifolds, all its properties
should be available from a local wave function. But we
need to sharpen what we mean by a local wave func-
tions, since wave functions typically depend on global
data such as boundary conditions. Amazingly, there ex-
ist a surprisingly simple local representation of globally
entangled states using tensor network language. In par-
ticular, a tensor network state (TNS) known as PEPS,
is given by associating a tensor Tyi] (afy...) to each site
i, where o; is a physical index associated to the local
Hilbert space, and «, 8, are inner indices and connect
to each other to form a graph. Using this representation,
the wave function is given by

W)= > em (THTE . ) ovoa,), @)
{o:}

where tTr(...) contracts the tensor indices in the tensor
product network. By choosing the dimension of the in-
ner indices large enough, one can approximate any state
arbitrarily well. This particular representation is espe-
cially interesting for the study of gapped states since it
automatically satisfies the area law, a property gapped
ground states are known to have [28, 29]. Omne can

think of TNS as parametrization of the interesting sub-
manifold of the Hilbert space, where ground states of
local gapped Hamiltonians live.

Local tensor representation of wave functions is how-
ever not enough, it must be equipped with a gauge struc-
ture [30]. Surprisingly, local variations of a tensor do not
always correspond to local perturbations of the Hamil-
tonian and can change the global topological order. In
order to approximate the ground state of a Hamiltonian
with topological order with gauge group G, it is impor-
tant to search within the set of variational tensors with
symmetry G. Arbitrarily small G breaking variations,
might lead to tensor networks which can approximate lo-
cal properties of a system well but give wrong predictions
about the global properties.

In [31] a few concepts were introduced to charac-
terize the symmetry structure of a TNS. In particular
dspace-1GG, which is the group of intrinsically dspace-
dimensional gauge transformations on the inner indices
that leave the tensors invariant. It was in particular
shown that in the case of the two-dimensional Zs topo-
logical state we have 2-IGG = Zs. Furthermore it was
shown that 2-IGG contains information about string op-
erators and can be used to construct the full set of de-
generate ground states on the torus from a local tensor
representation. [32]

Thus the local data we need is = local tensor + gauge
structure. From this gauge structure we can twist the
tensor to get the full set of ground states on a torus [31,
33, 34]. We shall call the natural basis we get from such
a procedure for twist basis.

We will in the following consider the Zy topological
state. We can construct a local tensor for this state in
the following way. Let the physical spins live on the links
of the lattice, and give each link an orientation as in figure
i }(lbz Put a tensor To(t;%?a'“"”) on each site and require

a

TN =1 if f+y—a-5=0 mod N, (4)
otherwise T‘izl;gzasm) = 0. This tensor has a Zx symme-

try given by the tensors (see figure 1(c))
B
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Zy Topological Order: Equipped with the ground
states of from local tensors, one can calculate the overlap
(1) to extract the universal topological properties.

As a simple example, let us calculate the overlap (1)
for the case of Zy topological state on the lattice in fig-
ure 1(a). For this simple example we will not use ten-
sor product representation for simplicity, since it can be
calculated directly. See [35] for calculation of (1) using
tensor network and gauge structure.

Let there be a local Hilbert space H, ~ C[Zy] ~ CV

associated to each link a € Q with basis {|o,) iva;lo.




(a)

FIG. 1. (a) Lattice under consideration, with the spins living
on the links. (b) Tensor network for Znx gauge theory. The
lattice is chosen with the orientation shown. The tensors live
on the lattice sites and the dots represent the physics indices.
(c) Symmetry of the Zy tensor.

We will represent a spin configuration |oq, 04, -..) us-
ing a string picture, where the state on link a € € is
represented by an oriented string of type o, € Zy with
a chosen orientation, and |0) corresponds to no string.
There is a natural isomorphism H, — Hq+ for link a and
its reversed orientation a* by |o,) > |04+) = | — 04)-

The ground state Hilbert space of the Zy topologi-
cal order consists of an equal superposition of all closed-
string configurations that satisfy the Zy fusion rules.

The string-net ground state Hilbert space on 72 can
be algebraically constructed in the following way. Let
A% denote the set of triangular plaquettes and for each
p € AJ define the string operator BpA which act on
the links bounding p, with clockwise orientation, by
|o) + |o + 1 mod N). The set of all contractable closed
loop configurations can be thought of as the freely gener-

ated group Gpee = <{BpA}peAZ>, modulo the relations
(B2 ~ 1, Tlyens BY ~ 1 and BSBS ~ BRBS,
denoted as G% = Giree/ ™~
group G%O C G correspond to closed loop configura-
tions on the square lattice links. For the ground states
on the torus, we need to introduce two new operators
W, and W,, corresponding to non-contractable loops
along the two cycles of T?. These satisfy (W;)V = 1,
i = x,y. With these, we can construct the group Gzﬂ ,
corresponding to closed string configurations with (a, )
windings around the cycle (z,y), modulo N. Similarly,
let Ga be the group of all possible closed string con-
figurations on the torus. These states are orthonormal

<9a6 |g@[§> = 5%57.&7&3 :

Similarly we let the sub-

The NZ2-dimensional ground state Hilbert space
is then spanned by the following vectors |a, ) =
|GoP |1/ Y guscce? [9a8), where a, 8 = 0,...,N — 1.
The construction can trivially be extended to higher-
genus surfaces.

This is the string-net basis for the Zy gauge theory.
The ground states in the twist basis corresponding to the
tensor (4), are just the eigenbasis the operators W, and

FIG. 2. Definition of S and T transformations. The S trans-
formation corresponds to rotating configurations 90 degrees,
while T corresponds to a shear transformation. Note that
this transformation does not leave the space of closed loop
configurations invariant.

Wy. These are given by

[Yab) = D yrer@t@igy - (5)

v |G geGA

27mi

where v = e~ and w; count how many times the
string configuration g wraps around the i’th cycle. Note
27 27

that Wy|ta) = €N %|thgp) and W, |z/1ab> = e N O |hgy).
For later use, note that |G%°| = al=1 = N2L*-1
G| = NMol-t = NI \GA| = N?|G%’| and
Gl = N?|GEY|.

Modular S and T-matriz from the ground state: We
can now define two non-local operators on our Hilbert
space Og,0r : H — H as in figure 2, mimicking the
generators of the torus mapping class group in the con-
tinuum. Here O s maps any spin configuration, to the 90
degree rotated configuration. O corresponds to shear
transformation and is defined as in figure 2. It is clear
that since we are on the lattice, these operators will not
preserve the subspace of closed string configurations.

We can easily calculate the matrix elements of Or and
Og between ground states. In both cases, only |G| con-
figurations have a non-zero overlap with the un-deformed
ground state. For the S transformation we find the over-
lap

A~ (; o R
<¢ab|05|¢a5>:5a’55b$_a@: ape” LY
1Gal
where we have defined the modular S matrix

Sab,ziE - 50,,551),—&-
_,—log(N)L
Tab,dbe g(N)

TbaE

Similarly we have (Yuy|Or|tag) =

2, where the modular T" matrix is given by

ab,ab = a+b,adpp- One can readily check that these sat-
isfy eq. (2) with c. =0 mod 8 and Cy;, ;5 = da,—ad_p p-
Thus this forms a projective representation of the mod-
ular group SL(2,7Z).

In order to use Verlinde’s formula and generate the
relevant UMTC, we need to put the modular matrices
in the quasi-particle basis [36]. This is done as follows,
for the Zy theory there are non-contractable magnetic

operators on the dual lattice satisfying (F )NV =1, and
with the commutation relations W,I'y = e~ sz W,
and W,I', = 2WI‘ W,. The basis we are after cor-

responds to havmg a well defined magnetic and electric
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FIG. 3. In the string-net basis, a modular S transformation
flips the topological sectors («, 8) — (8, —a mod N), while
a T transformation has the effect (o, 8) — (o, @+ 8 mod N).

flux through one direction of the torus. In the eigenbasis
of W, and Ty, |¢mn), we find

1 27i = =
_ mn+nm
Smn,mn = Nﬁ’ ~ )7

2mi
— mn
Tmn,mﬁ = 5m,fn6n,ﬁe N ,

the well-known modular matrices for the Zy model.

Perturbed Zy model: We will now consider a local
perturbation to the Zy topological state. One interest-
ing perturbation is to add a magnetic field of the form
I3 wea(Za+Z1), where Z, is a local operator defined as
Zgloa) = €% 9|0, [37). This perturbation breaks the
exact solvability of the model, but essentially corresponds
to introducing string tension to each closed string config-
uration. This can be implemented by local deformation
of the ground states of the form

1
$ AL 2y a0y @) gy,

V |GA‘ geGa

where A is a variational parameter. Furthermore £(g) =
>aca 31l — cos(3Fa,)], which is just the total string
length for N = 2.

Performing a S transformation, we find the overlap

|"/}ab>A =

N-1

N 1 7 -
w|O . _ (b—a)a—(b+a)p —L(g)
alYar|Oslvas)a = 15 > > A

af=0 gEGEB

If we view strings as domain walls of a Zy clock model
on square lattice described by the following Hamil-
tonian H = Z(ij) % [1 — COoS (%[Ui - Uj])] , 04,05

0,1,---,N — 1, we find that NZQEGODD AL =
Z{Ji} e PH can be viewed as the partition function of

the Zx clock model, where 8 = log(.A). In the supple-
mental material we show that in the disordered phase of
the Zx clock model,

Z(B) = Z e BH _ L?log(N)—f(B)L>+o(L™") (6)

{o:}
to all orders in perturbation theory in 3, where f(53) is
a function of 8 only. Since NZgEGEﬁ AL can be

viewed as the partition function of the Zy clock model
with twisted boundary condition, we find that

N ZgEGEﬁ A_L(g)

lo
& NZQGGODO A—ﬁ(g)

< hLe /¢, (7)

where h and ¢ are L independent constants. This is be-
cause the total free energies of the Zx clock model with
twisted and untwisted boundary condition can only dif-
fer by hLe~ /¢ at most. Putting everything together, we
find that

A(Dab|Os|tas) 4 = Sap ape 1OENTFBNLE+o(LTH (g)

The universal quantity, S, 55 is protected, to all orders
in 3.

3D Topological States and SL(3,Z): According to our
conjecture (1) there are similar universal quantities in
higher dimensions and it would be interesting to con-
sider a simple example in three dimensions. For exam-
ple, the mapping class group of the 3-torus is MCG(T?) =
SL(3,7). This group is generated by two elements of the

. (010 . (100
form [38] S= [0 0 1| and7T = |1 1 O|. These ma-
100 001

trices act on the unit vectors by S : (&,9, 2) — (2, %,9)
and similarly T : (&,9,2) — (& +9,9,2). Thus S cor-
responds to a rotation, while T is shear transformation
in the xy-plane. In the case of 3D Zy model, we can
directly compute these generators in a basis with well-
defined flux in one direction as [39]

S = 35000 T Ty i = 5,08 e T
These matrices contain information about self and mu-
tual statistics of particle and string excitations above the
ground state [39].

In the 2D limit where one direction is taken to be
very small, the operator creating a non-contractable loop
along this direction is now essentially local. By such a lo-
cal perturbation, one can break the GSD from N3 down
to N2. One can directly show that the generators for an
SL(2,7Z) C SL(3,Z) subgroup exactly reduce to the 2D
S and T matrices. [39]

Conclusion: In this paper we have conjectured a uni-
versal wave function overlap (1) for gapped systems in d
dimensions, which give rise to projective representations
of the mapping class group MCG(M?), for any manifold
M?. These quantities contain more information than the
topological entanglement entropies [18-20], and might
characterize the topological order completely, like in two
dimensions [7]. In a following paper [35], we will numer-
ically study the overlaps (1) for simple two-dimensional
models and show that the universal quantities are very
robust against perturbations and unambiguously charac-
terize phase transitions. In [39] we study the universal
quantities (1) for three-dimensional systems.
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