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Motivated by the intrinsic non-Fermi-liquid behavior observed in the heavy fermion quasicrystal
Au51Al34Yb15, we study the low-temperature behavior of dilute magnetic impurities placed in metal-
lic quasicrystals. We find that a large fraction of the magnetic moments are not quenched down to
very low temperatures T , leading to a power-law distribution of Kondo temperatures P (TK) ∼ Tα−1

K ,
with a non-universal exponent α, in a remarkable similarity to the Kondo-disorder scenario found in
disordered heavy-fermion metals. For α < 1, the resulting singular P (TK) induces non-Fermi-liquid
behavior with diverging thermodynamic responses as T → 0.

PACS numbers: 71.10.Hf, 71.23.Ft, 75.20.Hr

Introduction. Fermi-liquid (FL) theory forms the basis
of our understanding of interacting fermions. It works in
a broad range of systems, from weakly correlated met-
als [1] to strongly interacting heavy fermions [2]. Over
the past decades, however, the properties of numerous
metals have been experimentally found to deviate from
FL predictions [3, 4], and much effort has been devoted
to the understanding of such non-Fermi-liquid (NFL) be-
havior. One interesting avenue is provided by quantum
critical points (QCPs): NFL physics may occur in the as-
sociated quantum critical regime which is reached upon
tuning the system via a non-thermal control parameter
such as pressure, doping, or magnetic field [5, 6].

Remarkably, recent experiments have provided com-
pelling evidence of NFL behavior without fine tuning
in the heavy-fermion quasicrystal Au51Al34Yb15 [7, 8].
Furthermore, Ref. 7 also reports that no NFL behavior
emerges when one considers a crystalline approximant
instead of the quasicrystal, suggesting that this NFL
regime is associated with the particular electronic states
present in the quasicrystal but not in the approximant
[9–14]. Conventional QCP approaches have been em-
ployed to explain the fascinating behavior in this alloy
[15, 16], but they consider the effects of quasicrystalline
environment of the conduction electrons only minimally.

In this work we intend to close this gap by present-
ing a detailed calculation of the fate of isolated localized
magnetic moments when placed in both two- and three-
dimensional quasicrystals. Our results for dilute impu-
rities show that a considerable fraction of impurity mo-
ments is not quenched down to very low temperatures,
leading to a power-law distribution of Kondo tempera-
tures, P (TK) ∝ Tα−1K , with a non-universal exponent
α. This results in NFL behavior in both χ and C/T
as T → 0: χ ∼ C/T ∼ Tα−1 [17], a scenario very remi-
niscent of the Kondo effect in disordered metals [18–23].

Moreover, we show that the strong energy dependence of
the electronic density of states (DOS) characteristic of a
quasicrystal leads to a situation such that small changes
in the model parameters (band filling, Kondo coupling,
...) may drive the system in and out of the NFL region.
Quasicrystalline wavefunctions. A quasicrystal ex-

hibits of a small set of local environments, which reappear
again and again, albeit not in a periodic fashion. Their
pattern is not random either, since the structure factor
shows sharp Bragg peaks, although their symmetry is
noncrystallographic [24]. The n-fold symmetries (with
values of n = 5, 8, 10, . . .) seen in the diffraction pattern
of quasicrystals arise due to the fact that the local envi-
ronments occur with n equiprobable orientations.

The structure factor of quasicrystals is densely filled
in reciprocal space with diffraction spots [24] of widely
differing intensities. The brighter peaks are expected to
lead to strong scattering of conduction electrons, giving
rise to spikes in the DOS [25, 26]. The scattering due to
the remaining peaks, while weaker, results in wavefunc-
tions which show fluctuations at all length scales. The
Fibonacci chain, a one-dimensional quasicrystal, provides
an example of such wavefunctions [9], often referred to as
critical [9–13], in analogy with those found at the Ander-
son metal-insulator transition [27, 28].
Tiling model. For simplicity, we consider models on

quasiperiodic tilings. We first report results obtained for
a 2D tiling, where it is easier to handle large system sizes
numerically. In the Supplemental Material [29], we show
calculations for a 3D tiling [30] with very similar results,
confirming that our scenario is independent of both tiling
details and dimensionality.

The 2D tiling we consider is the octagonal tiling [31],
Fig. 1(a). This tiling is composed of two types of deco-
rated tiles: squares and 45o rhombuses, which combine to
create six distinct local environments with coordination
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Figure 1: Quasicrystal geometrical and electronic properties.
(a) Square approximant for the perfect octagonal tiling with
Na = 239 sites. (b) The six local site environments with z =
3, . . . , 8 nearest neighbors. (c) The total DOS as a function
of the energy for the Na = 8119 approximant averaged over
Nφ = 64 twist angles.

number z = 3, · · · , 8, Fig. 1(b).
As a minimal model to describe the electronic proper-

ties of quasicrystals, we consider a nearest-neighbor tight-
binding Hamiltonian in standard notation

Hc = −t
∑
〈ij〉,σ

(
c†iσcjσ + c†jσciσ

)
. (1)

In the following, energies are measured in units of t.
In our calculation, we consider periodic approximants
of the octagonal tiling of sizes Na = 7, 41, 239, 1393,
and 8119, obtained by the standard method of project-
ing down from a higher dimensional cubic lattice, as in
previous works [31–34]. To reduce finite-size effects we
use twisted boundary conditions, i.e., ψ (~r + Lx̂+ Lŷ) =
eiφxeiφyψ (~r) for a sample of linear size L. Our final an-
swer is obtained averaging over Nφ twist angles [35].

In Fig. 1(c) we show the well-known total DOS
for the octagonal tiling 〈ρc (ω)〉 =

∑Na

i=1 ρ
c
i (ω) /Na,

with the local DOS at site i given by ρci (ω) =∑
ν |ψcν (i)|2 δ (ω − Ecν), where ψcν is an eigenstate of Hc

in (1) with energy Ecν and the overline denotes the av-
erage over boundary conditions. 〈ρc (ω)〉 has a strong
energy dependence with several spikes and a pronounced
dip at ω ≈ ±2.0t. The large peak at ω = 0 is due to
families of strictly localized states, a consequence of the
local topology of the octagonal tiling [12, 36]. The spa-
tial structure of ρci (ω) is discussed in Ref. [29], where we
show that it is well-described by a log-normal distribu-
tion.
Local moments and large-N solution. We now move

to the main topic of this letter: the investigation of the
single-impurity Kondo effect in a metallic quasicrystal.
Specifically, we consider the U → ∞ Anderson impurity
model

H = Hc + Ef
∑
σ

nfσ + V
∑
σ

(
f†`σc`σ + c†`σf`σ

)
.(2)

This model describes a band of non-interacting electrons
(c-band) which hybridize with a localized f -orbital lo-
cated at site `. The operator f†`σ (f`σ) creates (destroys)
an electron with spin σ at the impurity site ` and the
U → ∞ limit imposes the constraint nfσ = f†`σf`σ ≤ 1.
Ef is the f -level energy, measured with respect to the
chemical potential µ, and the hybridization V couples
the impurity site to the conduction band. To obtain
quantitative results, we now turn to a large-N limit of
Eq. (2) that allows us to access arbitrary values of the
model parameters [37–39]. It introduces two variational
parameters Z` (quasiparticle weights) and ε̃f` (renormal-
ized f -energy levels), which are site-dependent in the case
of a quasicrystal. These parameters are determined by
minimization of the saddle-point free energy (see [29] for
further details)

F `MF =
2

π

ˆ +∞

−∞
f (ω) Im

[
ln
[
G̃f` (ω)

]]
dω

+ (ε̃f` − Ef ) (Z` − 1) , (3)

where f (ω) is the Fermi-Dirac distribution function.
The quasiparticle f -level Green’s function is given by
G̃f` (ω) = [ω − ε̃f − Z`∆f` (ω)]

−1, with the f -electron
hybridization function given by ∆f` (ω) = V 2Gc`` (ω),
where Gc`` (ω) =

∑
ν |ψcν (`)|2 / (ω − Ecν) is the c-electron

Green’s function. We define TK as the (half-)width of
the resonance at the Fermi level T `K ≡ Z`Im [∆f` (0)] [40]
and introduce the Kondo coupling J ≡ 2V 2/ |Ef |. The
f -level occupation is simply given by nf` = 1− Z`.

Because each site in the quasicrystal “sees” a different
environment, encoded in ∆f` (ω), we numerically solve
Eq. (3), at T = 0, individually placing Kondo impurities
at all Na sites of the approximant. Therefore, for every
single impurity problem we obtain a different value of
TK, which we use to construct the distribution the Kondo
temperatures P (TK).
Power-law distribution of Kondo temperatures. For

Kondo impurities placed in a disordered metal [18–23]
it is well established that the distribution of Kondo tem-
peratures possesses a power-law tail at low TK: P (TK) ∝
Tα−1K , with a non-universal exponent α [41]. For α < 1,
P (TK) becomes singular, and NFL behavior emerges in
the system [17, 29].

Surprisingly, we observe the same phenomenology for
quasicrystals, with sample results shown in Fig. 2. Here
we show the corresponding P (TK) for the octagonal tiling
at µ = −2.2t as a function of TK/T

typ
K (we defined the

typical value of TK as T typ
K ≡ exp [〈ln (TK)〉]). For ap-

proximants with Na ≥ 239 a clear power-law tail emerges
for TK < T typ

K with an exponent which depends on the
Kondo coupling J [29]. The dependence of T typ

K on J is
shown in the inset of Fig. 2, where we see that we obtain
the expected exponential relation [2].

Given the strong energy variations of 〈ρc (ω)〉,
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Figure 2: Distribution of the local Kondo temperatures
P (TK) on a log-log scale for several values of the Kondo cou-
pling J ; note that the curve corresponding to J = 0.77t was
scaled down. TK on the horizontal axis has been normal-
ized by T typ

K ; the unrenormalized distributions are shown in
Ref. 29. For TK . T typ

K the distributions acquire a power-law
form P (TK) ∼ Tα−1

K , with the exponent α continuously vary-
ing with J . For α < 1 the distribution is singular. (Notice
that for TK & T typ

K , P (TK) is also power-law like, with an ex-
ponent that does not depend on J . This is not the power-law
regime we refer to in this work). Inset: T typ

K as a function
of 1/J on a semi-log scale. Here we considered Na = 1393,
µ = −2.2t, and Nφ = 576.

Fig. 1(c), it is then natural to ask whether the form
P (TK) ∝ Tα−1K is observed at different locations of the
Fermi level µ. We checked that this is indeed the case:
in Fig. 3 we show how the exponent α varies with J for
several values of µ (to extract the value of α we followed
Ref. [42]). The dashed straight lines correspond to the
expected behavior at low J (Kondo limit) where we have
α ∝ J [29, 41].

While the curves α vs. J are all qualitatively the same,
there are important features associated to the position of
µ, and thus the value of 〈ρc (0)〉. Specifically for µ =
−2.0t we enter the NFL region for relatively high values
of the Kondo coupling, J ' 2.35t, and with an average
f -level occupation 〈nf 〉 ' 0.89 not so close to unity (for
all the other values of µ considered 〈nf 〉 ' 1). Moreover,
for J = 2.2t the thermodynamic properties diverge as a
power-law with an exponent 1− α ' 0.4, but if we then
vary µ by 10% we get α� 1 and the system displays FL
behavior.

To understand how a power-law distribution of Kondo
temperatures emerges in this problem, we closely fol-
low the arguments of Ref. [41]. In the Kondo limit,
〈nf 〉 → 1 and J → 0, it is easy to show that T `K =

T 0
Kexp

[
−θ2`

]
, where θ2` = π∆′c` (0)

2
/J 〈∆′′c` (0)〉 and

T 0
K = Dexp [−π 〈∆′′c` (0)〉 /J ] [29]. Here D is an energy

cutoff and ∆c` (ω) ≡ ω− 1/Gc`` (ω) is the local c-electron
cavity function [43] with a single (double) prime denot-
ing its real (imaginary) part. For ∆′c` (0) distributed ac-
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Figure 3: Power-law exponent α as a function of the Kondo
coupling J for five different positions of Fermi level µ. The
dashed lines are linear fits deep into the Kondo regime where
we expect α ∝ J to hold (see text). The horizontal dashed
line corresponds to α = 1 and marks the entrance into the
NFL region. At this point we have an average f -level occupa-
tion 〈nf 〉 = 1−〈Z〉 = 0.970, 0.995, 0.890, 0.995, and 0.960 for
µ = −0.5t, −1.8t, −2.0t, −2.2t, and µ = −3.5t, respectively.
Here we considered Na = 1393 and Nφ = 576. Inset: Distri-
bution of the real part of the local c-electron cavity function
fluctuations at the Fermi level δ∆′c = ∆′c (0) − 〈∆′c (0)〉 for
three different values of µ (the color scheme is the same as in
the main panel). Here we considered Na = 8119 and Nφ = 64.

cording to a Gaussian (see the inset of Fig. 3), it then
follows immediately that, up to logarithmic corrections,
P (TK) ∝ Tα−1K , with α = J 〈∆′′c (0)〉 /2πσ2

c , where σc is
the variance of P (∆′c (0)) [29]. Physically, ∆′c` (0) can be
interpreted as a renormalized on-site site energy for the
c-electrons. The simple Gaussian form of P (∆′c (0)), as
in the usual disordered problem [41], suggests an effec-
tive self-averaging, in the sense that for local quantities
like ∆′c (0) there seems to be no important distinction be-
tween disorder and quasiperiodic order. Nevertheless, we
know that this surprising result cannot hold for all ob-
servables, since, e.g., transport in quasicrystals is known
to display “super-diffusive” behavior [11–13].
Finite-size effects and NFL behavior at finite-

temperatures. To check the robustness of our scenario
against finite-size effects, we performed simulations on
approximants of different sizes Na. For all approxi-
mants, we find a minimum Kondo temperature in the
sample, Tmin

K . Below Tmin
K , FL behavior is then restored

within our model (all local moments are screened). From
Fig. 2, we learn that the power-law distribution of Kondo
temperature P (TK) ∝ Tα−1K emerges for TK < T typ

K .
Taken together, these two observations imply, in prin-
ciple, that the NFL range is restricted to the interval
Tmin
K < T < T typ

K . However, our calculations show that
Tmin
K vanishes as Na increases while T typ

K remains finite.
We thus conclude that the NFL range actually extends
down to T = 0 in an infinite quasicrystal [29].
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Figure 4: Averaged value of the impurity susceptibility 〈χ (T )〉
times the typical value of the Kondo temperature T typ

K as a
function of the temperature T normalized by T typ

K for four
values of the Kondo coupling J on a semi-log scale. For com-
pleteness, we show both the free spin and the χ ∝ −log (T )
(α = 0) curves. Here we considered µ = −2.0t, Na = 1393,
and Nφ = 576. Inset: T typ

K 〈χ (T )〉 as a function of T/T typ
K at

µ = 2.2t and J = 1.05t for two different approximant sizes:
Na = 7 and Na = 1393.

To access the finite-temperature behavior of the system
and to observe the anticipated NFL behavior, we con-
sider a simple interpolative formula for the local-moment
susceptibility, χ(T, TK) = 1/(T + TK), which captures
the leading behavior at both low and high-T [2, 29].
We then calculate the magnetic susceptibility of dilute
moments as an average of single-impurity contributions,
〈χ(T )〉 = N−1a

∑Na

`=1 χ
(
T, T `K

)
, with sample results in

Fig. 4 [44]. In the region T � T typ
K , 〈χ (T )〉 shows the ex-

pected free-spin form for all values of the Kondo coupling.
For T � T typ

K , and for Na →∞, we observe two distinct
behaviors depending on the value of α. For α > 1 we
recover the FL behavior at low-T with 〈χ (T )〉 ∼ 1/T typ

K ,
whereas for α < 1 we obtain 〈χ (T )〉 ∝ Tα−1. Moreover,
in the crossover region, T ∼ T typ

K , we have the surpris-
ingly robust result 〈χ (T )〉 ∼ −log (T ), regardless of the
value of α. This is due to the fact that P (TK) is essen-
tially flat around T typ

K (Fig. 2). For the smaller approx-
imants, however, Tmin

K is finite and hence FL behavior
must be restored at T < Tmin

K for all J . This is explicitly
shown in the inset of Fig. 4 where Tmin

K ' 10−2T typ
K for

Na = 7.
Electronic Griffiths phase and Au51Al34Yb15. The

Kondo-disorder(-like) scenario discussed here nicely ac-
counts for power-law divergences in the thermodynamic
quantities when dilute Yb local moments are placed
in a metallic quasicrystal. However, the quasicrystal
Au51Al34Yb15 forms a dense Kondo lattice, and one may
wonder to what extent our scenario is relevant in this con-
text. Based on analogies with disordered Kondo systems
(where both the dilute-impurity case and the lattice case

produce P (TK) ∝ Tα−1K [19, 41, 45, 46]), we then expect
power-law distributions of Kondo temperatures and the
corresponding NFL phenomenology for χ and C/T also
for the lattice problem. In that case, the NFL region is
known as an electronic quantum Griffiths phase and it
has by now been observed in several disordered strongly
correlated systems [47, 48].

The quasicrystal heavy fermion Au51Al34Yb15 shows
NFL behavior with χ ∼ T−0.51, C/T ∼ −log (T ) [7] or
χ ∼ T−0.55, C/T ∼ T−0.66 [8]. Our results, however, pre-
dict the same NFL exponent for both χ and C/T , and
this difference hampers a definite identification of quan-
tum Griffiths effects [49]. On the other hand, the (Grif-
fiths) power-law divergences are exact only at asymptoti-
cally low temperatures, where the regular contribution to
the thermodynamic responses may be completely disre-
garded, and in general the results depend not only on the
full form of the P (TK) curve but also on the particular
shape of the scaling functions for the physical observ-
ables [29, 44], which may account for differences in the
exponent. One such example is the transient −log (T )
divergence in 〈χ (T )〉, which is present for all values of
the exponent α in the region T ∼ T typ

K , Fig. 4.
Interestingly, it was also reported that the temper-

ature dependence of χ and C/T of the quasicrystal
Au51Al34Yb15 differs from that of its crystalline approx-
imant. Ref. 7 observes no NFL behavior for the approx-
imant, whereas Ref. 8 does observe NFL behavior but
with different powers as compared to the quasicrystal.
To briefly address this intriguing result, we first notice
that the size of the approximant unit cell considered in
[7, 8] is small and thus it is reasonable to assume that
the experimental situation is similar to the one illus-
trated in the inset of Fig. 4, where the NFL behavior
is bound to be observed only in a relatively narrow range
Tmin
K . T . T typ

K . Moreover, due to the strong energy
dependence of 〈ρc (ω)〉, Fig. 1(c), especially for µ close
to a dip (which seems to be case for Au51Al34Yb15 [50]),
tiny variations in parameters, such as the band filling or
Kondo coupling, may drive the system to/from a NFL
behavior. Therefore, care should be taken when drawing
any conclusions from this distinct behavior.
Conclusions. Motivated by the recently ob-

served NFL behavior in the heavy fermion quasicrys-
tal Au51Al34Yb15, we investigated the single-impurity
Kondo effect in the octagonal (2D) and icosahedral (3D)
tilings. We find a power-law distribution of Kondo tem-
peratures P (TK) ∝ Tα−1K and corresponding NFL be-
havior, in a surprising similarity to disordered metals.
Therefore, a quasicrystalline conduction band provides a
natural route to the emergence of a robust NFL behav-
ior without the tunning of external parameters as doping,
pressure, or external field. For the Kondo quasicrystalline
lattice problem, we expect, based on the analogy to dis-
ordered systems [17], a similar NFL behavior to be ob-
served. In addition, it would be interesting to investigate
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the feedback effect of the local moments, in particular
moments with TK < T , on the transport properties of
the quasicrystalline conduction electrons and the effects
of inter-site spin correlations [51].
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