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Abstract 

 

The ground-state energy, electron density, and related 
properties of ordinary matter can be computed efficiently 
when the exchange-correlation energy as a functional of the 
density is approximated semilocally.  We propose the first 
meta-GGA (meta-generalized gradient approximation) that 
is fully constrained, obeying all 17 known exact constraints 
that a meta-GGA can. It is also exact or nearly exact for a 
set of “appropriate norms”, including rare-gas atoms and 
nonbonded interactions. This SCAN (strongly constrained 
and appropriately normed) meta-GGA achieves remarkable 
accuracy for systems where the exact exchange-correlation 
hole is localized near its electron, and especially for lattice 
constants and weak interactions. 
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       Over the past 50 years, Kohn-Sham density functional 
theory (KS-DFT) [1-3] has become an ab initio pillar of 
condensed matter physics and related sciences. In this 
theory, the ground-state electron density ݊(ݎԦ)  and total 
energy ܧ  for non-relativistic interacting electrons in a  
multiplicative external potential can be found exactly by 
solving selfconsistent one-electron equations, given the 
uncomputable exact universal exchange-correlation energy ܧ௫௖[݊] as a functional of ݊ ൌ ∑ |߰௜,ఙ|ଶ௢௖௖௜,ఙ , with ߰௜,ఙ  a KS 
orbital. This xc energy term can be formally expressed as 
half the Coulomb interaction between every electron and its 
exchange-correlation hole in a double integral over space 
[4,5], but in practice its density functional must be 
approximated.  Semilocal functionals approximate it with a 
single integral and thus are properly size-extensive and 
computationally efficient, especially for large unit cells, 
high-throughput materials searches, and ab initio molecular 
dynamics simulations.  

 Many features of the exact functional ܧ௫௖[݊]  are 
known.  Nonempirical functionals, constructed to satisfy 
exact constraints on this density functional [6-9], are 
reliable over a wide range of systems (e.g., atoms, 
molecules, solids, and surfaces), including many that are 
unlike those for which these functionals have been tested 
and validated.  In this letter, we present a nonempirical 
semilocal functional that satisfies all known possible exact 
constraints for the first time, and is appropriately normed 
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on systems for which semilocal functionals can be exact or 
extremely accurate.  

Semilocal approximations can be written as  ܧ௫௖[݊՛, ݊՝] ൌ ׬ ݀ଷߝ݊ݎ௫௖(݊՛, ݊՝, ,՛݊׏ ,՝݊׏ ߬՛, ߬՝).          (1) 

Here ݊՛(ݎԦ) and ݊՝(ݎԦ), the electron spin densities, are the 
only ingredients of the local spin density approximation 
(LSDA) [1,10,11-14]. Spin-density gradients are added in a 
generalized gradient approximation (GGA) [6,14-19], and 
the positive orbital kinetic energy densities  ߬ఙ ൌ∑ ଵଶ ௜,ఙ|ଶ௢௖௖௜߰ߘ|  (implicit nonlocal functionals of ݊(ݎԦ))) are 
further added in a meta-GGA [7-9,20,21]. The broad 
usefulness of nonempirical semilocal functionals is 
evidenced by the fact that the PBE GGA construction paper 
[6] is the 16th most-cited scholarly article of all time [22].  

The LSDA was based on what we call an “appropriate 
norm”: It was by construction exact for the only set of 
electron densities for which it could be exact, the electron 
gas of uniform spin densities (or those that vary slowly 
over space). LSDA was surprisingly useful even for solid 
surfaces and atoms or molecules. But the second-order 
gradient expansion [14,23], which improves upon LSDA in 
the slowly-varying limit, was worse than LSDA for real 
systems, because LSDA satisfies exact constraints that 
finite-order gradient expansions do not [4,5,6,24]. Non-
empirical GGAs like PBE [6] and nonempirical meta-
GGAs like TPSS [7] and revTPSS [8] were constructed to 
achieve higher accuracy by satisfying more exact 
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constraints, and the H atom was added as an appropriate 
norm for the meta-GGAs.  Unlike the GGAs [18], the meta-
GGAs need not choose among incompatible constraints.  

        Despite early successes [25,26,27], the TPSS and 
revTPSS meta-GGAs were less accurate than the PBE 
GGA for the critical pressures of structural phase 
transitions of solids [28,29]. This was due to a spurious 
order-of-limits problem [30,31], which could be removed 
[9] if ߬ appeared only in the dimensionless variable 

ߙ   ൌ (߬ െ ߬௪)/߬௨௡௜௙ ൐ 0  ,                                           (2)  

where ߬ௐ ൌ ଶ/8݊|݊׏|  is the single-orbital limit of ߬  and ߬௨௡௜௙ ൌ ߙ .ଶ/ଷ݊ହ/ଷ is the uniform-density limit(ଶߨ3)(3/10)  recognizes covalent single (ߙ ൌ 0), metallic ( ߙ ൎ 1  ) 
and weak ( ߙ ب 1 ) bonds [32] (as does the “electron 
localization function” [33] 1/(1 ൅  ଶ)).  We constructedߙ
several interpolations of the exchange energy density 
[9,34,35] between ߙ ൌ 0  and 1, with extrapolation to ߙ ب 1.  These abandoned some of the exact constraints 
satisfied by TPSS and revTPSS. For example, they used a 
GGA correlation, which is not one-electron self-correlation 
free. (Note that, in the presence of a paramagnetic current 
density, meta-GGAs require a gauge correction [36].) 

       Here we aim to improve the nonempirical meta-GGA 
by satisfying all known possible exact constraints, 
including some not satisfied by TPSS and revTPSS. We 
also add some appropriate norms for which semilocal 
functionals can be extremely accurate although not exact: 
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rare-gas atoms and nonbonded interactions. Both norms 
contain information about 0 ൏ ߙ ൏ ∞, but the latter brings 
more information about ߙ ب 1. The common feature of all 
appropriate norms, and a necessary condition for semilocal 
approximations to be accurate, is that the exact exchange-
correlation hole for a considered density remains close to 
its reference electron. This condition is not satisfied when 
electrons are shared over stretched bonds, as in stretched 
H2

+.  Fully nonlocal functionals, including global [37] and 
local [38] hybrids with exact exchange or self-interaction 
corrections [11,39], often start from a good semilocal 
functional, and can better describe such bonds at increased 
computational cost. 

        There is an expected error cancellation between 
semilocal exchange and semilocal correlation, since the 
exact exchange-correlation hole is deeper and more 
localized near the electron than is the exact exchange hole. 
Localization of the exact exchange hole for a density is thus 
a sufficient but not a necessary condition for localization of 
the exact exchange-correlation hole.  In closed-shell atoms 
and nonbonded interactions, but not in bonded molecules or 
jellium surfaces, even the SCAN exchange energy is 
accurate.  

         The exchange energy for any pair of spin densities is 
negative, and can be found from that for a spin-unpolarized 
total density via the exact spin-scaling relation [40].  Thus 
we only need to construct a meta-GGA for the spin-
unpolarized case, 
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[݊]௫ܧ ൌ ׬ ݀ଷߝ݊ݎ௫௨௡௜௙(݊)ܨ௫(ݏ,  (3)                                  , (ߙ

where ߝ௫௨௡௜௙(݊) ൌ െ(3/4ߨ)(ߨ3ଶ݊)ଵ/ଷ  is the exchange 
energy per particle of a uniform electron gas, ܨ௫(ݏ,  is the (ߙ
exchange enhancement factor, and 

ݏ                 ൌ  (4)                              [ଵ/ଷ݊ସ/ଷ(ଶߨ3)2]/|݊׏|

is the dimensionless density gradient. By using these 
dimensionless variables, we satisfy the correct uniform 
density-scaling behavior [41].  

       For ߙ ൎ 1, we construct an approximate re-summation 
of the fourth-order gradient expansion (GE4) for exchange 
[42], valid for slowly-varying densities with small s and ߙ ൎ ௫ீܨ :1 ாସ(ݏ, (ߙ ൌ 1 ൅ ଶݏ(10/81) െ ସݏ(1606/18225) ൅ ଶ(1ݏ(511/13500) െ (ߙ ൅ (5913/405000)(1 െ    ଶ.                      (5)(ߙ
This PBE-like resummation is ݄௫ଵ(ݏ, (ߙ ൌ 1 ൅ ݇ଵ െ ݇ଵ/(1 ൅  ଵ),                             (6)݇/ݔ

with ݔ ൌ ଶ[1ݏ஺௄ߤ ൅ (ܾସݏଶ/ߤ஺௄)݁݌ݔ(െ|ܾସ|ݏଶ/ߤ஺௄)] ൅ሼܾଵݏଶ ൅ ܾଶ(1 െ െܾଷ(1]݌ݔ݁(ߙ െ   ଶ]ሽଶ.                        (7)(ߙ

Here ߤ஺௄ ൌ 10/81 , ܾଶ ൌ (5913/405000)ଵ/ଶ ,  ܾଵ ൌ(511/13500)/ (2ܾଶ) ,  ܾଷ ൌ 0.5 , and ܾସ ൌ ஺௄ଶߤ /݇ଵ െ1606/18225 െ ܾଵଶ . For ߙ ൌ 0 , we impose the strongly-
tightened bound ܨ௫ ൑ 1.174  [43], which is satisfied by 
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LDA (Fx = 1) but not by PBE, TPSS, or revTPSS: ܨ௫(ݏ, ߙ ൌ 0) ൌ ݄௫଴݃௫(ݏ) where ݄௫଴ ൌ 1.174 and 

  ݃௫(ݏ) ൌ 1 െ  (8)                                       .  [ଵ/ଶିݏെܽଵ]݌ݔ݁

As in the TPSS and revTPSS meta-GGAs, we fit the exact 
exchange energy of the hydrogen atom, via ܽଵ ൌ 4.9479. 
To make the exchange energy per particle scale correctly to 
a negative constant under non-uniform scaling to the true 
two-dimensional limit [44,45] (as it does not in PBE, TPSS, 
or revTPSS), we make Fx vanish like ିݏଵ/ଶ as ݏ ՜ ∞ [43].  

       Then we interpolate ܨ௫ between ߙ ൌ 0 and ߙ ൎ 1, and 
extrapolate to ߙ ՜ ,ݏ)௫ܨ :∞ (ߙ ൌ ሼ݄௫ଵ(ݏ, (ߙ ൅ ௫݂(ߙ)[݄௫଴ െ ݄௫ଵ(ݏ,  (9)      ,(ݏ)ሽ݃௫[(ߙ

௫݂(ߙ) ൌ 1)/ߙെܿଵ୶]݌ݔ݁ െ 1)ߠ[(ߙ െ (ߙ െ ݀୶݁݌ݔ[ܿଶ୶/(1 െߙ)ߠ[(ߙ െ 1),                                                                     (10)                     

and (ݔ)ߠ is a step function of ݔ. In the spirit of the correction 
to a different resummed asymptotic series [46], the 
interpolation/extrapolation gives no correction to our 
resummed gradient expansion to any power of ݊׏ in the 
slowly-varying limit. There are three parameters (ܿଵ୶ ൌ0.667 ,  ܿଶ୶ ൌ 0.8 ,  ݀୶ ൌ 1.24 ) in the interpolation 
/extrapolation, and one ( ݇ଵ ൌ 0.065 ) in the resummed 
gradient expansion,  determined by the appropriate norms.   

           Figure 1 shows the SCAN exchange enhancement 
factor ܨ௫   for a spin-unpolarized density as a function of 
reduced density gradient ݏ for several values of ߙ. Not only 
does SCAN obey the rigorous bound ܨ௫ ൑ 1.174   for 
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ߙ ൌ 0 , but it also (and more strongly) obeys the conjectured bound ܨ௫ ൑ 1.174  for all ߙ  [35,43].  By 
comparison, the PBE, TPSS, and revTPSS exchange 
enhancement factors all tend monotonically to the general 
Lieb-Oxford bound [47] 1.804 ൌ 2.273/2ଵ/ଷ  as ݏ ՜ ∞  
for all ߙ . Thus SCAN is radically different from those 
previous semilocal functionals. 

           By analogy with ܨ௫  , we can define an ݊  -dependent ܨ௫௖ ൌ ௫ܨ ൅ ߙ ௫ of Eq. (3).         The correlation energy is similarly constructed as an interpolation betweenܨ ௫௖ is of courseܨ ௖, the enhancement over local exchange due to spin polarization, correlation, and semi-locality. The high-density spin-unpolarized limit ofܨ ൌ 0  and ߙ ൎ 1 , and an extrapolation to ߙ ՜ ∞. The ߙ ൎ 1 limit uses a PBE-like expression that recovers the second-order gradient expansion for correlation in the slowly-varying limit [14]. The ߙ ൌ 0 limit shares the same formula with the ߙ ൎ 1 limit, with its local part designed just for 1- and 2- electron systems [48]. The ߙ ൌ 0  limit makes the correlation energy vanish for any (fully spin-polarized) one-electron density. In the spin-unpolarized case, it satisfies the 2-electron version of the Lieb-Oxford bound [47,48], ܨ௫௖ ൑ 1.67 , and fits the exchange-correlation energy of the He atom. The SCAN correlation energy is by construction non-positive. It properly scales to a finite negative value per electron under 
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uniform density scaling to the high-density limit [44], and to zero like the exchange energy in the low-density limit. Its correlation energy per electron is properly finite (but improperly zero) under non-uniform density scaling to the true two-dimensional limit   [44, 45].  The interpolation has three parameters, to be determined by the appropriate norms. All detailed formulas, and a list of all 17 exact constraints plus our appropriate norms, are given in the supplementary material [49]. An important practical feature of our exchange-correlation enhancement factor ܨ௫௖ is that, as functions of ݏ, curves for different ߙ do not cross one another strongly (e.g., Fig. 1). In our experience, this condition is needed to achieve selfconsistent solutions by the approach of Neumann, Nobes, and Handy [56].          By recovering GE4, plus the second-order gradient 
expansion for correlation, we also recover a nearly-exact 
linear response for a uniform density [57]. Finally, we are 
able to satisfy the rigorous general Lieb-Oxford bound ܨ௫௖ ൑ 2.215, as tightened by Chan and Handy [58]. This 
bound is approached only in the low-density limit, where 
our ܨ௫௖  properly shows a weak dependence [7,12] on 
relative spin polarization. 

          Now there are seven parameters (c1x, c2x, dx, k1, c1c, 
c2c, dc) which are determined by fitting to (1) the large-Z 
asymptotic coefficients [17, 59] for the exchange energies 
of rare-gas atoms [15] of atomic number Z,  
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lim௓՜ஶ (ܼ)௫ܧ ൌ ௫௅஽஺ܧ ൅ ௫ଵܼߛ ൅  ௫ଶܼଶ/ଷ,                   (11)ߛ

(2) the large-Z asymptotic coefficient of the correlation 
energy of rare-gas atoms [60],  lim௓՜ஶ (ܼ)௖ܧ ൌ ௖௅஽஺ܧ ൅        ௖ଵܼ,                                       (12)ߛ

identified as a key exact constraint for functional 
approximation [60], (3) the binding energy curve of 
compressed Ar2 [61] (with a mean absolute error less than 1 
kcal/mol for R=1.6, 1.8. and 2.0 Å, bond lengths much 
smaller than the equilibrium bond length 3.76 Å), as a 
paradigm of nonbonded interaction (with Kr, another rare-
gas atom, as the united-atom limit), and (4) the jellium 
surface exchange-correlation energy [18,62] at bulk density 
parameters rs = 2, 3, 4, and 6 Bohr, within the “range of the 
possible” set by two recent Quantum Monte Carlo 
calculations [63,64] and a kernel-corrected random phase 
approximation calculation [64]. Note that the exact 
exchange and correlation holes in the jellium surface have 
long-range parts which cancel one another perfectly [65, 
66]. (In Eqs. (11) and (12), we have found the reference 
coefficients ߛ௫ଵ ൌ െ0.2259 ， ௫ଶߛ ൌ 0.2551 ， ௖ଵߛ ൌ0.0388 by extrapolating accurate energies for Ne, Ar, Kr, 
and Xe.) 

      Our calculations to construct and test the SCAN 
meta-GGA are described next: For the rare-gas atoms, we 
use accurate Hartree-Fock orbitals [67]. For jellium 
surfaces, LDA orbitals are used. Our other calculations are 
selfconsistent. For the Ar2 binding energy curve, we use the 
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Gaussian code [68] with triple-, quadruple- and quintuple-
zeta basis sets, extrapolated to the complete basis-set limit. 
For other molecules, we use the 6-311++G (3df,3pd) basis 
set. For weak interactions in the S22 set [69], we use the 
counterpoise correction to reduce the basis-set 
superposition error. For solids, we use the VASP code [70] 
with converged plane-wave basis sets and k-space meshes.  

           Table 1 shows the relative errors of SCAN for ܧ௫, ܧ௖ , and ܧ௫௖  for the rare-gas atoms, in comparison to 
accurate reference values [15,35,71,72]. The errors in Ex 
are less than 0.5%, but error cancellation with the much 
smaller Ec leads to errors in ܧ௫௖  less than 0.1%. This 
confirms that rare-gas atoms are an appropriate norm. The 
relative errors of ܧ௫ for compressed Ar2 are 0.26%, about 
the same as for a single Ar atom.  

          Table 2 shows the error statistics of SCAN and other 
semilocal functionals for molecules and solids.  

       For the G3 set [73] of 223 molecules, including some 
large organic ones, the error is by construction almost 
minus the error of the atomization energy. For this set, 
SCAN is much more accurate than the GGAs PBE and 
especially PBEsol [18], and about as accurate as the meta-
GGAs TPSS [7] and M06L [20]. However, M06L has 35 
empirical parameters fitted to atomization energies and 
other chemical data. TPSS has no such empirical 
parameter, but its complicated form was developed when 
atomization energies were a gold standard, and may have 
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been indirectly biased by that. (The form of TPSS was 
complicated by its use of a second dimensionless ingredient 
built from ߬, z ൌ ߬௪/߬ ൐ 0.)  

        Atomization energies of molecules and cohesive 
energies of solids may not be the most appropriate or 
important tests of semilocal functionals. There is little 
statistical correlation [74] between the error that a 
functional makes for atomization energies and its error for 
reaction energies. (1) Most atoms that bind into molecules 
or solids are open-shell and at least partly spin-polarized, 
while most molecules and solids are spin-unpolarized. (2) 
Most chemical reaction energies and all heats of formation 
from the standard states of the elements, when calculated 
ab initio, do not involve free atoms. Thus spin-polarization 
errors are more troublesome for atomization energies than 
for reaction energies. It is most important that the 
functionals should predict energy differences among 
molecules and solids at fixed atomic composition [75, 76], 
e.g., 2H2O→2H2+O2. We have verified that SCAN is much 
better than TPSS or PBE for the energy differences 
between the diamond and beta-tin structures of solid Si 
under pressure, and we will test SCAN for other structural 
phase transformations and for the heats of formation of 
molecules and solids in future work. 

      To see that SCAN may give a more consistent 
description of molecular energies than other semilocal 
functionals, we define the G3HC set of 46 hydrocarbon 
molecules. For each tested functional, we subtract from the 
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energy of the partly spin-polarized C atom the average over 
G3HC of the functional’s error per C atom.  After this 
correction, the MAE is much smaller for SCAN than for 
any other tested functional. 

      The BH76 set [77] comprises 76 barrier heights for 
chemical reactions (of order 0 to 50 kcal/mol). The barrier 
arises at a transition state with long, weak bonds, and full 
nonlocality can improve it substantially. Nevertheless, 
SCAN gives better barrier heights than any functional in 
Table 2 except the meta-GGA M06L, which was partly 
fitted to barrier heights. 

        S22 [69] is a set of 22 weak interaction energies 
(hydrogen and van der Waals bonds, with equilibrium 
binding energies from about 0 to 20 kcal/mol) between 
closed-shell complexes. For these energies, SCAN is much 
better than other functionals (and competes with M06L, 
which was fitted in part to weak interactions).  We believe 
that this success is related to our appropriate norming.  (Of 
course, no semilocal functional can capture the long-range 
part of the van der Waals interaction, but SCAN captures 
much of the intermediate-range part, as M06L does.) 

         LC20 [78] is a set of 20 lattice constants of solids 
(from 3.451 to 6.042 Å). For this set, SCAN is far more 
accurate than any other functional in Table 2. Far less 
accurate is M06L, which was fitted to molecular data. We 
expected SCAN to be accurate for lattice constants: Fuchs 
and Scheffler [79] established that lattice-constant errors 
arise from the region of core-valence overlap  [9]. 
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      In summary, we have constructed the first meta-GGA 
that satisfies all known possible exact constraints (about 6 
for exchange, 6 for correlation, and 5 for the sum of the two 
[49]).  But there are still infinitely many ways to satisfy 
these constraints. Thus we have also satisfied appropriate 
norms, for which our SCAN meta-GGA can be extremely 
accurate: the energies of rare-gas atoms and nonbonded 
interactions. We have not fitted to any real bonded system. 
Thus we regard our functional as a nonempirical one that 
can be reliably applied to a wide range of problems unlike 
those to which it was normed.  

       Table 2 suggests that SCAN is a major improvement 
over PBE (and much more so over LSDA), at nearly the 
same computational cost. In future work, we will further 
explore the possibilities and limitations of SCAN, which 
we suspect are close to those of the semilocal form, Eq. (1).   
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 Fig. 1. The SCAN exchange enhancement factor of Eq. (3) 
for a spin-unpolarized system, as a function of s (the 
dimensionless density gradient) for several values of α (the 
dimensionless deviation from a single orbital shape).  

 

 

Table 1. Relative errors (%) of SCAN for the exchange, 
correlation, and exchange-correlation energies of the rare-
gas atoms. 

 

 Ne Ar Kr Xe 
Ex  0.46  0.25  0.19  0.07 

Ec -11.80 -4.49 -5.07 -3.36 
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Exc  0.07  0.14  0.09  0.01 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Mean error (ME) and mean absolute error (MAE) 
of SCAN and other semilocal functionals for the G3 set of 
molecules [73], the BH76 set of chemical barrier heights 
[77], the S22 set of weakly-bonded complexes [69], and the 
LC20 set of solid lattice constants [78]. For the G3-1 subset 
of small molecules, the SCAN MAE is 3.2 kcal/mol. G3HC 
is a subset of 46 G3 hydrocarbons, to which we have 
applied empirical corrections for the C atom as described in 
the text to show how consistently SCAN describes 
molecules. For all data sets, zero-point vibration effects 
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have been removed from the reference experimental values. 
The LSDA results for G3 are from Ref. [25]. BLYP 
[15,80], PBEsol [18], and PBE [6] are GGAs; SCAN, 
TPSS [7], and M06L [20] are meta-GGAs. We could not 
locate BLYP in VASP, but Ref. [81] suggests that its LC20 
MAE may be more than twice that of PBE. (1 kcal/mol = 
0.0434 eV)        

 G3HC 

(kcal/mol) 
G3 

(kcal/mol) 
BH76 

(kcal/mol) 
S22 

(kcal/mol) 
LC20  

(Հ) 
 ME MAE ME MAE ME MAE ME MAE ME MAE 
LSDA -5.6 13.0 -83.7 83.7 -15.2 15.4 2.3 2.3 -0.081 0.081 
BLYP  1.8 6.2 3.8 9.5 -7.9 7.9 -8.7 8.8   
PBEsol -4.1 6.5 -58.7 58.8 -11.5 11.5 -1.3 1.8 -0.012 0.036 
PBE -2.1 6.6 -21.7 22.2 -9.1 9.2 -2.8 2.8 0.051 0.059 
TPSS  1.9 3.8 -5.2 5.8 -8.6 8.7 -3.7 3.7 0.035 0.043 
M06L -0.2 4.6 -1.6 5.2 -3.9 4.1 -0.9 0.9 0.015 0.069 
SCAN -0.8 2.7 -4.6 5.7 -7.7 7.7 -0.7 0.9 0.007 0.016 

                                                                                                              


