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When a liquid touches a solid surface, it spreads to minimize the system’s energy. The classic thin-film5

model describes the spreading as an interplay between gravity, capillarity and viscous forces, but cannot see

an end to this process as it does not account for the nonhydrodynamic liquid–solid interactions. While these

interactions are important only close to the contact line, where the liquid, solid and gas meet, they have macro-

scopic implications: in the partial-wetting regime, a liquid puddle ultimately stops spreading. We show that

by incorporating these intermolecular interactions, the free energy of the system at equilibrium can be cast in a10

Cahn–Hilliard framework with a height-dependent interfacial tension. Using this free energy, we derive a meso-

scopic thin-film model that describes statics and dynamics of liquid spreading in the partial-wetting regime.

The height-dependence of the interfacial tension introduces a localized apparent slip in the contact-line region

and leads to compactly-supported spreading states. In our model, the contact line dynamics emerge naturally as

part of the solution and are therefore nonlocally coupled to the bulk flow. Surprisingly, we find that even in the15

gravity-dominated regime, the dynamic contact angle follows the Cox–Voinov law.

PACS numbers: 47.55.N-, 47.55.nd, 47.55.np, 68.08.Bc

Pour a glass of water on a table; what happens? It spreads

for a while and stops. This process seems simple enough to

be described by a reduced-order model, and indeed the clas-20

sic thin-film model is a step in this direction [1]. This model

can be derived from the Stokes equations using the lubrication

approximation, but it contains no information about the inter-

actions between the liquid and the underlying solid surface.

While these interactions are of nonhydrodynamic origin and25

only become significant at heights less than ∼ 100 nm [2],

they have pronounced macroscopic implications: the classic

model, which does not incorporate these intermolecular in-

teractions, predicts that the liquid never stops spreading, in

stark contrast with the basic observation of a static puddle that30

forms in the partial-wetting regime.

A liquid is said to be partially wetting to a surface when it

forms a contact angle in the range of 0 < θY ≤ π/2 at equi-

librium. This equilibrium contact angle is well described by

the Young equation, cos θY = (γsg − γsl)/γ, where γsg , γsl35

and γ are solid–gas, solid–liquid, and liquid–gas interfacial

energies [3]. To extend the classical description to the partial-

wetting regime, one can supplement it with nonhydrodynamic

interactions as a boundary condition at the contact line [1, 4].

When capillary forces are the dominant driving mechanism,40

the dynamic contact angle, θd, follows the Cox–Voinov law,

θ3d = θ3Y + 9Ca ln (lM/lµ) [4–6], where Ca = ηU/γ is the

capillary number with liquid viscosity η and contact line ve-

locity U ; lM and lµ are characteristic macroscopic and mi-

croscopic length scales in the problem. Despite its success in45

matching experimental data, invoking this boundary condition

does not address the question of how the nonhydrodynamic

forces determine the emerging dynamics at the macroscopic

scale.

Here, we work within the long-wave approximation to de-50

rive a generalized mesoscopic thin-film equation that captures

the dynamics of the moving contact line self-consistently as

part of the solution, making it nonlocally coupled to the rest of

the system. Within the framework of nonequilibrium thermo-

dynamics, a conservation equation for the height of the liquid55

film h can be written as [7]:

∂h

∂t
= ∇ ·

(

M(h)∇

(

δΓ

δh

))

, (1)

where M(h) is the mobility, Γ is the free energy, and

δΓ/δh = ∂Γ/∂h−∇ · [∂Γ/∂(∇h)] is the variational deriva-

tive of the free energy with respect to height. We start by

deriving the free energy Γ of a nonvolatile liquid puddle on

a solid surface. At equilibrium, the variation of the free en-

ergy is zero, δΓ = 0. Writing the free energy as Γ =
∫

Φ(h,∇h) dX and using the calculus of variations, we ar-

rive at the following two equations for the specific free energy

Φ [8, 9]:

∂Φ

∂h
−∇ ·

(

∂Φ

∂∇h

)

= 0, (2)

[

Φ−∇h ·

(

∂Φ

∂∇h

)]

h=0

= 0, (3)

known as the Euler–Lagrange and Augmented Young equa-

tions, respectively. Equation (2) determines the shape of

the liquid surface at equilibrium and reduces to the Young–60

Laplace equation in the simplest form, while Eq. (3) serves as

the boundary condition at the contact line.

Macroscopic contributions taken into account, we can write

the free energy as Φ(h,∇h) ≡ ΦM (h,∇h) = 1/2ρgh2 +
(γsl − γsg) + γ

√

1 + (∇h)2, in which ρ is the liquid den-65

sity and g is the gravitational acceleration. The classic thin-

film model can be recovered by putting the macroscopic free

energy into the conservation Eq. (1). Substituting ΦM into

the Augmented Young equation, we recover the Young equa-

tion [3]. An often-overlooked constraint on the free energy70

is that as the height of the liquid film goes to zero, one

should recover the solid–gas interfacial energy, limh→0 Φ = 0
[3, 10]. It is straightforward to see that the only way to sat-
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isfy this constraint with the macroscopic free energy is to have

γ+γsl = γsg , corresponding to the complete-wetting regime.75

Microscopic intermolecular forces close to the contact line

must therefore be considered to arrive at a self-consistent de-

scription of the free energy for partial-wetting systems. These

interactions are commonly known as surface forces [11] or

disjoining/conjoining pressure [2]. Taking the intermolec-80

ular forces Φµ(h) into account, we can write the free en-

ergy as Φ(h,∇h) ≡ ΦM (h,∇h) + Φµ(h). Substituting into

the Augmented Young equation, we arrive at what is com-

monly known as the Derjaguin-Frumkin equation, cos θY =
cos θµ+Φµ(0)/γ, relating the Young contact angle to the sur-85

face forces [8]. The Young angle is defined at the macro scale,

whereas θµ is the microscopic contact angle [3, 8, 12], which

needs to be zero for the free energy to be continuous. The

combination of a nonzero Young contact angle and a zero mi-

croscopic contact angle indicates the existence of an ultra-thin90

liquid film around the main drop, the so-called pseudo-partial-

wetting regime [10, 13]. While precursor films are commonly

observed in the complete-wetting regime [14], they are not in

nonvolatile partial-wetting liquids [6, 10, 13]. We therefore

need a description of the system’s free energy that allows for95

nonzero microscopic contact angles.

Traditionally, surface forces are expressed as a function of

film height only, since they are derived for parallel liquid–

solid interfaces [1, 2]. Close to the contact line, however, the

liquid and solid interfaces are not parallel and one should ac-100

count for the interface slope to arrive at a proper description

of the intermolecular forces [15, 16]. The free energy should

therefore be written as Φ(h,∇h) ≡ ΦM (h,∇h)+Φµ(h,∇h).
Consistent with the derivations of [16] and using the long-

wave approximation, we propose to decompose the surface105

forces as Φµ(h,∇h) = φµ,1(h) + φµ,2(h)(∇h)2/2. Substi-

tuting the free energy, Φ, into the Augmented Young equation

and requiring the continuity of the free energy, it is straight-

forward to show that all constraints are satisfied without im-

posing any a priori condition on θµ if φµ,1(0) = S and110

φµ,2(0) = −γ, where S = γsg − γsl − γ is the spread-

ing coefficient [10]. The microscopic contact angle therefore

emerges naturally as part of the solution, consistent with the

predictions of nonlocal density functional theory [17]. We can

therefore write the free energy as:115

Γ =

∫
[

f(h) + κ(h)
(∇h)2

2

]

dX. (4)

This free energy expression resembles the Cahn–Hilliard

formulation [18], in which the free energy can be decom-

posed into bulk f(h) = ρgh2/2 − S + φµ,1(h) and inter-

facial κ(h)(∇h)2/2 contributions, where κ(h) = γ+φµ,2(h)120

can be interpreted as a height-dependent interfacial tension.

A nonlinear KPZ-type term can be generated using this free

energy [19]. The constraints on φµ,1(0) and φµ,2(0) imply

that f(0) = 0 and κ(0) = 0. Vanishing of the interfacial

tension as the film height tends to zero is required to arrive125

at compactly-supported spreading states [20], and our derived

h

f(h)

h∗

h∗

∼ mm

∼ nm

dry

wet

S

FIG. 1. Schematic of the tangent construction on the bulk free energy,

f(h), leading to the coexistence of wet, h = h∗, and dry, h = 0,

states. In the absence of intermolecular forces, the bulk free energy

does not reduce to the solid–gas interfacial energy as h → 0 unless

S = 0, which implies complete wetting [10].

form of the free energy naturally meets this requirement. An-

other constraint on φµ,1(h) can be incorporated through a tan-

gent construction on the bulk free energy, which ensures that

the two coexisting phases at equilibrium have the same chem-130

ical potential [21], i.e. df/dh|h=0 = df/dh|h=h∗
= ρgh∗

(Fig. 1), where h∗ = 2 lγ sin (θY /2) is the height of the

liquid puddle that is set by a balance between gravity and

surface tension, and lγ =
√

γ/ρg is the capillary length

[10]. To describe the functional form of φµ(h), we use a135

surface force that consists of long-ranged attractive van der

Waals forces and short-ranged repulsive forces, similar to an

integrated Lennard-Jones potential [2]. Other combinations

can also be used [22, 23]. We therefore write φµ,i(h) =
αi

[

(1 + βi)d
2

0/(h+ d0)
2 − βid

8

0/(h+ d0)
8
]

, where d0 =140

√

A/6πγ ≈ 0.2 nm is a molecular length scale with A be-

ing the Hamaker constant [2, 10]. The coefficients α1 = S,

β1 = (1− d0/h∗)/3 and α2 = −γ, β2 = 1/3 are determined

through imposing the constraints on φµ,i(0), the tangent con-

struction, and requiring a nonzero slope at the contact line.145

The denominator has been regularized by adding d0, allowing

us to recover the solid–liquid interfacial energy when the film

height is zero [10, 16, 22].

Substituting the derived free energy from Eq. (4) back into

the conservation Eq. (1) and nondimensionalizing the param-150

eters as h̃ = h/h∗, x̃ = x/Rf , t̃ = t/(3µR2

f/ρgh
3

∗
),

f̃ = f/ρgh2
∗
, κ̃ = κ/γ and dropping the tilde for conve-

nience, the generalized thin film equation takes the form:

∂h

∂t
= ∇·

{

M(h)∇

[

∂f

∂h
−

1

Bo

√

κ(h)∇ ·
(

√

κ(h)∇h
)

]}

,

(5)

in which Bo = R2

f/l
2

γ is the Bond number, where Rf is the155

characteristic lateral length of the liquid, taken to be its final

equilibrium radius. Vanishing of the interfacial tension κ(h)
at the contact line indicates that the order of the equation is

reduced by one, pointing to a singular perturbation problem.
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FIG. 2. Comparison of the mobility with and without slip (M(h) =
h3 , M(h) = h3+3bsh

2, bs = 10d0 , M(h) = h3+
(3/2)λ2(dκ/dh)h2, λ = 10d0, θY = π/12 ). While Navier

slip is global, our proposed slip model is localized to the contact-line

region, where it dominates the Navier slip, consistent with molecular

simulations [24, 25].

This picture is consistent with the description suggested by160

de Gennes [26], indicating the dominance of intermolecular

forces very close to the contact line, leading to a natural cut-

off scale that removes the moving-contact-line singularity.

Starting from the Stokes equation, using the lubrication ap-

proximation, and assuming no slip at the wall and zero shear165

stress at the liquid–gas interface, τ = 0 (neglecting the vis-

cosity of the gaseous phase), the mobility in Eq. (1) is easily

derived to be M(h) = h3. The no-slip boundary condition,

however, will lead to the moving-contact-line singularity [27].

To resolve the singularity, the Navier slip boundary condition170

is generally used, introducing a slip velocity proportional to

the shear stress in the liquid adjacent to the wall, us = bs∇u
[28], where bs is the slip length, which depends on the liquid–

solid interaction [29]. The slip condition leads to a mobility

of the form M(h) = h3 + 3 bsh
2. In immiscible flows how-175

ever, slip is localized to the contact-line region [24, 25] and

to match the observations of molecular simulations, ad hoc

functions with decaying slip away from contact line have been

proposed [30].

The free energy derived in Eq. (4) incorporates a height-180

dependent interfacial tension κ(h). A gradient in the interfa-

cial tension leads to the Marangoni effect [32], which causes

a nonzero shear stress at the liquid–gas interface, driving a

net flow. In analogy with this effect, the height dependence

of the interfacial tension leads to a nonzero interfacial shear185

stress at the liquid–gas interface, τ + λ2(J · t)dκ/dh = 0,

where J = ∇(δΓ/δh) is proportional to the flux, t is the

unit vector tangent to the interface and λ is an effective slip

length. The variation of the interfacial tension is limited to

the contact line region where intermolecular forces dominate.190

Away from the contact line (dκ/dh = 0) or at equilibrium

(J = 0), the balance reduces to the usual zero shear stress

at the liquid–gas interface (τ = 0). Only during spread-

ing does this nonzero interfacial stress come into play, hence

the name “flow-induced Marangoni effect” [33]. Incorpo-195

rating both this shear stress at the liquid–gas interface and

the Navier slip boundary condition at the liquid–solid inter-

face, we can write the mobility in the most general form as

M(h) = h3+3
[

bs + (λ2/2)dκ/dh
]

h2+3bsλh. This model

bears similarities with the generalized Navier boundary con-200

dition [25], and slip due to the gradient of chemical potential

close to the contact line [34]. Our proposed model therefore

addresses two main requirements regarding slip at the con-

tact line: 1) it is localized to the contact line region, and 2)

it depends on the nonhydrodynamic interactions close to the205

contact line and introduces an energy scale [6] (Fig. 2).

We solve Eq. (5) using standard finite differences [35] and

adaptive mesh refinement. The disparate length scales in-

volved in this problem make the numerical computations pro-

hibitively expensive. Since we are mainly interested in the210

macroscopic predictions of our model, we regularize the mi-

croscopic length d0 by multiplying it by a magnifying fac-

tor 104, therefore bringing the peak of the energy function

shown in Fig. 1 from the nano to the micro scale. For sim-

plicity, we set the Navier slip length to zero, bs = 0, and215

consider only the localized effective slip in the contact-line

region, λ = 10d0 (Fig. 2). We take the capillary length to be

lγ = 1.5mm, which is typical of silicone oil.

We now address the original question of how a liquid pud-

dle spreads on a solid surface. We expect a partial-wetting220

liquid to spread initially to minimize the system’s free energy

and to stop spreading when it reaches equilibrium. For small

liquid volumes, i.e. when Bo / 1, capillarity is the dominant

driving force, leading to Tanner’s law for spreading, which

predicts that the wetted area, A(t), scale as t1/5 [36] (Fig. 3).225
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FIG. 3. The rate of spreading is influenced by the volume of liquid.

For small volumes (Bo / 1, ), capillary forces are dominant

and the drop takes the shape of a spherical cap while viscosity resists

the spreading, leading to Tanner’s law A ∼ t1/5. For large volumes

(Bo ≈ 360, ), gravity dominates, leading to a t1/4 scaling;

the liquid puddle takes the shape of a pancake at equilibrium. Af is

the final equilibrium area and θY = π/12.
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FIG. 4. (a) The dynamic contact angle is defined at the inflection point of the drop profile (top), where its slope (bottom) reaches a plateau

(tan θ = (h∗/Rf )(dh/dr)). (b) The dynamic contact angle, θd, follows the Cox–Voinov law θ3d − θ3Y = 9Ca ln (lM/lµ), but increases

with the volume of the liquid. (c) The nonlocal influence of bulk flow can be conflated into the macroscopic length scale, lM , leading to

a collapse of the dynamic contact angle data for the different volumes onto a single curve (solid line represents the Cox–Voinov law). The

stars represent the classic experiments of [31] corresponding to the silicone oil-air interface in a capillary tube (lM/lµ ≈ 1.25 × 103). The

rescaled contact angle data from the model accounts for the fact that the microscopic length scale lµ is magnified by 104 in the simulations:

(θ3d − θ3Y )r = θ3d − θ3Y +(9 ln 104)Ca, (inset: an approximate fit lM/lµ = 4.8× 104 × (1− exp(−0.75Bo1/2)) is shown as the dashed line)

As the volume of the liquid increases, i.e. Bo ≫ 1, grav-

ity becomes the dominant driving force in the bulk while sur-

face tension effects remain limited to the vicinity of the mov-

ing contact line [37–39]. Balancing the gravity and viscous

forces acting at the macroscopic scale, one arrives at a scal-230

ing of t1/4 for the wetted area. In this regime, the spherical-

cap approximation is no longer valid, but similarity solutions

for the quasi-static spreading can still be obtained [38, 39].

In both the capillary and gravity-dominated regimes, the fi-

nal approach to equilibrium is exponential [39, 40], deviating235

markedly from the quasi-static self-similar power-law behav-

ior. Our model predicts this final approach to a compactly-

supported spreading state (Fig. 3).

While the macroscopic spreading rate is a good measure for

examining the validity of our model, it is not very sensitive to240

the contact line dynamics, which arrest the spreading drop as

it approaches equilibrium. In the capillary-dominated regime,

the Cox–Voinov law describes the dependence of the dynamic

contact line on the spreading rate [4–6]. Our model indeed

displays an excellent agreement with the Cox–Voinov law for245

different equilibrium contact angles θY [Fig. 4(b)]. Consis-

tent with earlier observations [41], the dynamic contact an-

gle exhibits a dependence on the liquid volume. This depen-

dence is expected, as the macroscopic length lM in the Cox–

Voinov law is related to the radius of the drop [4, 42], which250

scales with its volume (Rf ∼ V 1/3 in the capillary-dominated

regime and ∼ (V/h∗)
1/2 in the gravity-dominated regime).

The surprising observation, however, is that the Cox–Voinov

law provides an excellent description of the dynamic contact

angle even in the gravity-dominated regime. This observa-255

tion is supported by early experiments in the complete-wetting

regime [43]. The macroscopic length scale, lM , increases with

volume and thus with the Bond number, but saturates to a

constant value (proportional to the capillary length) beyond

the transition from capillary-dominated to gravity-dominated260

regime (at Bo ≈ 30). Taking the effective slip length to be

the microscopic length scale lµ = λ, we find the macroscopic

length scale lM by fitting the dynamic contact angle data to

the Cox–Voinov law (lM ≈ 100µm in the gravity-dominated

regime). Taking the dependence of the macroscopic length265

scale on the volume into account, we observe a remarkable

collapse of all the dynamic contact angle data corresponding

to different volumes onto a single curve [Fig. 4(c)].

In summary, we have shown that incorporating nonhydro-

dynamic interactions between the liquid and solid in a self-270

consistent manner leads to a free energy that can be cast in

a Cahn–Hilliard formulation with a height-dependent inter-

facial tension. This height-dependence allows compactly-

supported spreading states with no precursor film [20], in

contrast with the classic thin-film model that does not admit275

such solutions [44]. The height-dependence of the interfa-

cial tension further introduces an effective slip that is local-

ized to the contact-line region, where it dominates the Navier

slip, consistent with the observations of molecular simulations

[24, 25]. Our thin-film model predicts that the dynamic con-280

tact angle follows the Cox–Voinov law both in the capillary-

dominated and gravity-dominated regimes. This feature illus-

trates the ability of our mesoscopic model to capture nonlocal

effects on the contact line dynamics, which exert a fundamen-

tal control on pattern formation in immiscible porous media285

flows [45].
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044501 (2014).


