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Magic state distillation is a crucial component in the leading approaches to implementing universal
fault-tolerant quantum computation, with existing protocols for both qubit and higher dimensional
systems. Early work focused on determining the region of distillable states for qubit protocols, yet
comparatively little is known about which states can be distilled and with what distillable region for
d > 2. Here we focus on d = 3 and present new four-qutrit distillation schemes that improve upon
the known distillable region, and achieve distillation tight to the boundary of undistillable states
for some classes of state. As a consequence of recent results, this implies that there is a family of
quantum states that enable universality if and only if they exhibit contextuality with respect to
stabilizer measurements. We also identify a new routine whose fixed point is a magic state with
maximal sum-negativity i.e., it is maximally non-stabilizer in a specific sense.

One of the main challenges facing the implementation
of a large scale quantum computer is the ability to pro-
tect quantum information from decoherence, typically
introduced by unwanted interactions with the environ-
ment. Encoding of information in quantum error correct-
ing codes provides a partial answer [1–3]. However such
encodings normally only allow a limited set of transver-
sal or manifestly fault-tolerant operations, usually the
stabilizer operations i.e., Clifford gates, preparation of
stabilizer states and Pauli measurements. Stabilizer op-
erations alone do not enable universality [4] and therefore
some additional resource will be required to supplement
them in any proposal for universal fault-tolerant quan-
tum computation.

A leading solution (although alternatives exist [5, 6])
is provided by the magic state distillation protocol, first
proposed by Knill [7] and Bravyi and Kitaev [8]. There it
was shown that stabilizer operations may be promoted to
universal fault-tolerant quantum computation when sup-
plemented by a supply of an additional resource state,
known as a magic state. Furthermore, these magic states
may be prepared through an iterative procedure in which
less pure states are consumed to produce a higher fidelity
output state using only stabilizer operations. If the input
ancillas to a distillation routine are expressible as a mix-
ture of stabilizer states (geometrically, if they are inside
the stabilizer polytope e.g. Fig. 1) then no amount of sta-
bilizer operations can produce a magic state. Reichardt
[9] showed that the distillable region was tight to the
stabilizer boundary along the octahedron edges in the
so-called H-direction (see Fig. 1), while Campbell and
Browne [10, 11] showed that (for stabilizer codes of fixed
length) there exists a region of undistillable non-stabilizer
states outside the octahedron faces in the T -direction.

For qudits (hereafter this refers to systems of odd
prime dimension d), undistillability of a state is implied
by it having a quasi-probabilty representation (in Gross’
discrete Wigner function [12, 13]) that is everywhere non-
negative [14]. Conversely, there is currently no known
impediment to the distillability of states that do exhibit

FIG. 1. The qubit Bloch sphere and the stabilizer octahe-
dron: The convex hull of stabilizer eigenstates – the stabilizer
polytope – carves out a solid octahedron. H-type magic states
lie outside the octahedron edges, and T -type magic states lie
outside the octahedron faces. The green volume outside one
face represents the region in which ancillas have not yet been
shown to be distillable.

negativity – it has been conjectured to be a sufficient
condition [15]. Recently, the presence of negativity was
shown to exactly coincide with the possibility of exhibit-
ing state-dependent quantum contextuality using stabi-
lizer measurements [16]. Proving that the presence of
negativity (or contextuality) is sufficient to boost stabi-
lizer operations to universality requires showing that any
state that is negatively represented is distillable by some
magic state distillation routine. While magic state dis-
tillation protocols for all prime dimensions [17–19] (some
highly efficient [18]) have been found, no single proto-
col has been shown to distill states tight to the undistill-
able boundary (note that tight distillation was previously
achieved for a single direction using a combination of sta-
bilizer codes in [17] however). Here we focus on d = 3 and
present distillation schemes that achieve tight distillation
for multiple directions using less demanding protocols, as
well as showing distillability of a geometrically significant
and maximally non-stabilizer magic state.

Definitions.− We begin with a brief overview of the
magic state distillation protocol and provide some use-
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ful definitions. Magic state distillation procedures are
based on stabilizer error correcting codes, which can be
described by a set of generators {Gi} consisting of Pauli
operators. We take the generalized d-level Pauli opera-
tors to be

D(x|z) = ω2−1xzXxZz, x, z ∈ Zd , (1)

where 2−1 is understood as the inverse of 2 in Zd, and
qudit X and Z are given by

X |j〉 = |j + 1〉 , Z |j〉 = ωj |j〉 (2)

and ω = e2πi/d is a d-th root of unity. The set of unitary
operations that map Pauli operators to Pauli operators
under conjugation is the Clifford group [20], whose ele-
ments (for the single-qudit case) can be written as

C = D(x|z)UF (3)

UF =

{
1√
d

∑d−1
j,k=0 ω

2−1β−1(αk2−2jk+δj2) |j〉 〈k|, β 6= 0∑d−1
k=0 ω

2−1αγk2 |αk〉 〈k| , β = 0

where F =
(
α β
γ δ

)
is a symplectic matrix and all variables

are elements of Zd = {0, 1, . . . , d− 1}.
Any magic state distillation protocol based on stabi-

lizer codes consists of iteratively applying the following
steps: 1. Prepare n copies of the input state ρ⊗nin ; 2. Per-
form Pauli measurements corresponding to each of the
n − k generators Gi, and postselect on the desired out-
come; 3. Optionally perform a Clifford transformation
based on the measurement outcome. When successful,
the output state(s) will be purified in the direction of
the target magic state. We represent input states with
depolarizing noise as

ρM = (1− p) |M〉 〈M |+ p
13

d
, (4)

where |M〉 is the target magic state, and p∗ will be used
to denote the depolarizing noise rate above which our
distillation routine no longer works.

For qudits (d > 2) the subset of quantum states known
to be classically simulable, and therefore not useful for
magic state distillation, is prescribed by the Wigner poly-
tope

Wigner polytope := {ρ : Tr(ρAx,z) ≥ 0, x, z ∈ Zd},

where the phase point operators, for qutrits, are given by
Ax,z = D(x|z)A0,0D

†
(x|z) with

A0,0 =

 1 0 0
0 0 1
0 1 0

 . (5)

This polytope contains the subset of quantum states that
are nonnegatively represented in all d2 positions of Gross’
discrete Wigner function [13]

Wρ(x, z) =
1

d
Tr(Ax,zρ). (6)

It turns out that the sum-negativity [15] of a state,

sn(ρ) =
∑

x,z:Wρ(x,z)<0

|Wρ(x, z)|, (7)

is an operationally useful quantification of how far from
the Wigner polytope a state is.

(a,b,b) subspace.−We describe magic state distilla-
tion protocols that iteratively distill towards pure states
within the +1-eigenspace of the A0,0 phase point operator
(5). This eigenspace is degenerate and has eigenvectors
of the form (a, b, b) ∈ C3. Before describing the protocols,
we give an overview of the geometrical interpretation of
this eigenspace. We may parameterize pure states via

|ψ〉 = (a, b, b) = (cos θ, eiφ sin θ/
√

2, eiφ sin θ/
√

2) (8)

where φ ∈ [0, 2π) and θ ∈ [0, π/2]. The set of pure states
corresponds to the surface of a sphere in analogy with the
Bloch sphere for qubits. A point within the interior of the
sphere with spherical coordinates (r, θ, φ) corresponds to
the state

ρ = r |ψ(θ, φ)〉 〈ψ(θ, φ)|+ (1− r)13

d
(9)

where |ψ(θ, φ)〉 is given by (8). However unlike the qubit
Bloch sphere, states in the interior no longer correspond
to convex combinations of surface states in general. For
example, in the qubit Bloch sphere picture, we expect an
equal mixture of any two diametrically opposite points
to correspond to the maximally mixed state. However in
our representation, mixing the North pole |0〉 with the
South pole |N〉 = (|1〉+ |2〉)/

√
2 gives

1

2
|0〉〈0|+ 1

2
|N〉〈N | = 1

4

 2 0 0
0 1 1
0 1 1

 6= 13

3
. (10)

Despite the fact that our representation does not respect
convexity, we feel it provides good intuition for the rele-
vant geometry and symmetries. Mixtures of stabilizer
states as well as states with positive Wigner function
form a closed volume within the sphere (see Fig. 2).

In order to map the distillable region within the
(a, b, b) subspace, it will suffice to partition the space into
Clifford-equivalent sections and find the distillable region
for only one such section. It is a well-known property of
the Clifford group that A0,0 is invariant under the sym-

plectic part of the Clifford group i.e., A0,0 = UFA0,0U
†
F

for all F ∈ SL(2,Zd). Not only does the symplectic
unitary U12

= 13 fix every qutrit vector but the sym-
plectic unitary U−12

= A0,0 also fixes every vector of
the form (a, b, b). Consequently, the set of non-trivial
symplectic transformations acting on (a, b, b) states is
SL(2,Z3)/ ± 12 = PSL(2,Z3). This latter symmetry
group is isomorphic to the rotation group of the tetra-
hedron (i.e. the alternating group A4). Therefore we ex-
pect the entire space to partition into |PSL(2,Z3)| = 12
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(a) (b)

FIG. 2. Depolarized versions of qutrit states
(cos θ, eiφ sin θ/

√
2, eiφ sin θ/

√
2): Points on surface of the

sphere represent pure states, while every point in the interior
is a depolarized version of the nearest surface state (see (4)).
Figure (a) depicts the set of states that are non-negatively rep-
resented in the Wigner function and hence useless for MSD.
The volume roughly corresponds to a “curvy tetrahedron”
which hereafter will be referred to as the Wigner tetrahedron.
Figure (b) depicts the set of states expressible as convex com-
binations of stabilizer states. A regular tetrahedron is shown
as a visual aid and the pure states at its vertices are stabilizer
states {|0〉 , (1, ωk, ωk)/

√
3, k ∈ Z3}.

FIG. 3. Clifford symmetries: The surface of the sphere lying
outside one face of the Wigner tetrahedron is outlined in black
and divided into 3 Clifford-equivalent wedges. Each wedge is
labelled by the symplectic matrix F such that UF maps states
in that region back to the region of interest (highlighted).

Clifford-equivalent regions. These regions correspond to
the 4 Wigner tetrahedron faces, further divided into 3
wedges each as shown in Fig. 3. We will consider distil-
lation confined to the region highlighted in Fig. 3.

MSD routines.− In this section we present two classes
of magic states within the (a, b, b) subspace, give explicit
distillation schemes for each, and sketch out the cor-
responding distillable region. Magic states within the
(a, b, b) subspace can be generally split into two types,
those lying outside the six Wigner tetrahedron edges, and
those lying outside the four Wigner tetrahedron faces. By
numerically searching over a large set of stabilizer codes,
we find that there exists many limiting states outside the
Wigner tetrahedron edges, where limiting state is taken
to mean the end point of the iterative procedure based
on a given stabilizer code. In contrast, we find only one
limiting state outside the Wigner tetrahedron faces, and

FIG. 4. Cross section through the x-z plane showing limiting
states of various MSD routines: Different circles correspond
to different choices of stabilizer code and every such code can
distill all states in the hatched area. Two magic states of
interest are denoted by filled circles; the |E〉 state lies on the
arc joining |0〉 and |+〉, while the south pole |N〉 is Clifford
equivalent to the Norrell state |N ′〉 that we discuss in the text.
The colored regions represent undistillable states inside the
Wigner polytope (lighter, larger) and mixtures of stabilizer
states (darker, smaller) i.e., this shows a 2-d slice through
Fig. 2.

this is the state geometrically located the furthest out-
side the Wigner tetrahedron in the middle of each face.
These so-called Norrell states [15], which were not pre-
viously known to be directly distillable, have maximal
sum-negativity sn = 1

3 arising from a Wigner function
of − 1

6 in two phase space points. The set of numerically
identified limiting states is shown in Fig. 4.

We now demonstrate distillation schemes based on sta-
bilizer codes for both types of magic state. We begin
with the edge states for which tight distillation thresh-
olds were achieved, and then present the Norrell state
which improves the distillation region outside the Wigner
tetrahedron faces slightly. Out of the many edge-type
magic states depicted in Fig. 4, the state whose code has
the best overall distillable region will be presented. The
state |E〉 = (0.774149, 0.447601, 0.447601) which lies on
the x-z plane is distilled by a [[4, 1, 2]]3 code given by
generators:

Edge, |E〉 :

G1 0 0 0 2 2 2 0 0

G2 1 1 0 1 1 1 2 2

G3 0 0 1 0 2 0 0 0

ZL 2 0 0 2 2 2 1 2

XL 0 0 0 0 1 2 0 0

(11)

in (x|z) notation where each element is taken to be a
generalized Pauli operator. This magic state |E〉 may
be transformed into an equatorial state useful for state
injection by first applying a symplectic unitary UF with
F = ( 1 1

0 1 ) and then following the parity check and equa-
torialization procedures as outlined in [17]. For all states
|θ〉 := (cos θ, sin θ/

√
2, sin θ/

√
2) along the Wigner tetra-
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hedron edge, on the line (x, y, z) = (sin 2θ, 0, cos 2θ) with
0 ≤ θ ≤ arccos 1/

√
3, we find an error threshold given by

p∗ = 1− 4

1 + 3 cos 2θ + 3
√

2 sin 2θ
, (12)

which corresponds to a state ρθ = (1−p∗) |θ〉 〈θ|+p∗13/3
with Wigner function

Wρθ =

 r s s

t 0 0

t 0 0

 r = cos 2θ+
√
2 sin 2θ+3

9 cos 2θ+9
√
2 sin 2θ+3

≥ 0

s = 4 cos 2θ+
√
2 sin 2θ

9 cos 2θ+9
√
2 sin 2θ+3

≥ 0

t =
√
2

3 cot 2θ+csc 2θ+3
√
2
≥ 0

(13)

and therefore distillation is tight to the Wigner polytope
boundary for all points along the Wigner tetrahedron
edges. The maximally robust edge state occurs at θ =
1
2 cos−1( 1√

3
) and this corresponds to the +1 eigenstate of

the qutrit Fourier transform. Using our edge code, this
state can tolerate depolarizing noise up to

p∗ = 1− 4

1 + 3
√

3
≈ 0.354438 , (14)

which is the best known depolarizing noise threshold for
qutrits. The edge code distills points along the depo-
larizing axis of the Norrell state |N ′〉 = (2,−1,−1)/

√
6

with a threshold of p∗ ≈ 0.304379. The entire distill-
able region of this [[4, 1, 2]]3 edge code confined to the
Clifford-equivalent wedge of interest is shown in Fig. 5.
The situation is analogous to the qubit picture wherein
distillation is tight for all edges (H-type) and there is a
pocket of undistillable states outside the Wigner tetrahe-
dron faces (T -type).

The distillation region may be improved slightly by a
second stabilizer code which has the Norrell state |N ′〉 =
(2,−1,−1)/

√
6 as a limiting state. The Norrell state |N ′〉

is Clifford equivalent to the south pole state |N〉 shown
in Fig. 3. This [[4, 1, 2]]3 code has generators:

Face, |N ′〉 :

G1 2 0 0 2 1 2 0 1

G2 2 1 0 1 1 0 1 0

G3 1 0 1 2 0 2 1 0

ZL 1 0 0 2 1 0 1 2

XL 0 0 0 0 1 2 1 2

(15)

We find that the Norrell state |N ′〉 is distilled up to a
threshold noise rate of p∗ ≈ 0.32989, which increases
the distillable region as shown in Fig. 5. The equato-
rialization procedure of [17] converts the Norrell state
into something useful for state injection (two copies of
|N ′〉 enable implementation of the non-Clifford unitary
U = diag(1, 1,−1) [17]).

The success probabilities psucc = Tr(ρ⊗4in ΠC) for both
codes for points along the depolarizing axes of their re-
spective limiting states begin at approximately psucc =
0.12 for p = 0, assuming post-selection on the trivial er-
ror syndrome. Similar to [17] error suppression appears

(a) The wedge of
interest.

(b) The x-z plane.

(c) The y-z plane. (d) The x-y plane.

FIG. 5. The remaining undistillable region highlighted in
green, after using the edge code (11). The small red dot in
(a) corresponds to the threshold point for distilling |N ′〉 using
the face code (15).

to be linear, which means that despite the small code
size, both codes are outperformed in terms of efficiency
by a previously known qutrit code [18, 19]. Our focus was
on maximizing the range of applicability of MSD schemes
rather than their efficiency. Nevertheless, exploring the
landscape of stabilizer codes with non-stabilizer limiting
states may have practical consequences if these codes can
be adapted or used in conjunction with others (as in [21])
to produce more efficient schemes.

Summary & open questions.− We have demonstrated
the tightness of magic state distillation schemes to the
Wigner polytope boundary for d = 3 in some directions.
This represents a first step towards showing that all neg-
atively represented or contextual states are distillable by
some routine. Our results help to map out the set of
codes that are useful for MSD, over and above those
known to useful due to their transversality properties
[8, 18, 22, 23], and the set of limiting states for higher
dimensional systems. We have shown that a certain class
of maximally non-stabilizer state is distillable by at least
one stabilizer code. We have given a convenient param-
eterization of the +1-eigenspace of the A0,0 phase space
operator which allows us to easily visualize the distillable
region and relevant symmetries. The distillable region in
our work presents an interesting analogy to known re-
sults for the qubit Bloch sphere, where all states outside
the edge of the relevant polytope are distillable. Why
these states in particular are limiting states of an MSD
routine, and what properties of the identified stabilizer
codes make them useful for magic state distillation are
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interesting open questions.
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