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We present evidence of a direct, continuous quantum phase transition between a Bose superfluid
and the ν = 1/2 fractional Chern insulator in a microscopic lattice model. In the process, we
develop a detailed field theoretic description of this transition in terms of the low energy vortex
dynamics. The theory explicitly accounts for the structure of lattice symmetries and predicts a
Landau forbidden transition that is protected by inversion. That the transition is continuous enables
the quasi-adiabatic preparation of the fractional Chern insulator in non-equilibrium, quantum optical
systems.

The canonical examples of topological order are pro-
vided by the fractional quantum Hall states, convention-
ally found in two-dimensional electron gases [1, 2]. Their
lattice cousins, the fractional Chern insulators (FCI),
naturally arise when strongly interacting particles in-
habit flat, topological band-structures [3–17]. Effective
microscopic Hamiltonians whose ground states realize
such phases have been numerically identified in synthetic
quantum systems, ranging from ultracold gases in optical
lattices to ensembles of solid-state defects [18–20]. On the
experimental front, [21] have recently loaded 87Rb into
the topological, nearly-flat band of a Hofstadter model.

Unlike typical condensed matter systems, quantum op-
tical proposals of topological phases represent driven,
non-equilibrium implementations in an effective Hamil-
tonian picture. Thus, even if an appropriate Hamilto-
nian can be realized, guiding the system to its ground-
state is still a major challenge. Often, one cannot sim-
ply “cool” by decreasing the temperature of a surround-
ing bath. One approach to this problem is provided
by quasi-adiabatic preparation, wherein the correlated
ground state is reached from a simple initial state by
slowly tuning the Hamiltonian parameters. In the case
of FCIs, natural starting states include superfluids (SF)
and charge-density wave (CDW) insulators, as these of-
ten arise in close proximity to the FCI state of interest
[18].

Quasi-adiabatic preparation requires that any quan-
tum phase transition between the initial and final state
be continuous. A system tuned through a first order
transition would need to be ramped exponentially slowly
in system size to avoid being stuck in a metastable high
energy state [22, 23]. On the other hand, continuous
quantum phase transitions allow for two possibilities: 1)
strictly adiabatic preparation with ramp time scaling as
a power law in system size [24–26] or 2) quasi-adiabatic
preparation with a final state energy density scaling as an
inverse power law with the ramp time [27–29]. Unfortu-
nately, there is relatively little known regarding quan-
tum phase transitions between conventional and frac-
tional phases as such transitions lie beyond the Ginzburg-
Landau paradigm [30].
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FIG. 1. (a) Two parameter phase diagram of the driven NV
model as determined by exact diagonalization of Eq. (2). (b)
Phase diagram in the presence of microscopic inversion sym-
metry breaking parameter g = 0.2. The (π, π) CDW insulator
extends in two fingers which split the SF ↔ FCI transition,
showing that the underlying transition at g = 0 is continuous
and protected by inversion symmetry. Spectra and structure
factors collected on coarse grey grid sites; full diagnostics (see
text) calculated on 1-D (red) cuts at spacing of 0.01. Markers
with errorbars indicate regions where diagnostics were am-
biguous. Markers without errorbars indicate ambiguous re-
gions narrower than marker size.

Field theories of possible critical points between
Laughlin fractional quantum Hall states and Mott insu-
lators were studied in [31–33]. Meanwhile, a theory of a
superfluid to bosonic ν = 1/2 Laughlin state was recently
constructed in [34]. All of these theories assume that any
additional lattice symmetries are preserved throughout
the phase diagram. They require the bosons to be at in-
teger filling and cannot describe CDW order. Moreover,
to date, none of these continuous transitions has been
established in any microscopic model, as second order
phase transitions are difficult to characterize in the small
systems amenable to numerical study.

In this Letter, we report two main advances. First,
we establish the presence of a direct continous transition
between a superfluid and a ν = 1/2 FCI state in a micro-
scopic model of interacting spins. We do this by showing
that the direct superfluid - FCI transition splits into two
transitions when we perturbatively break inversion sym-
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FIG. 2. Numerical diagnostics on a cut of the phase diagram
at θa = 0.75 calculated at Nsites = 32, Nparticles = 8. (a)
Berry curvature σxy averaged over the boundary condition
torus for g = 0. In the SF, σxy is not quantized, while in the
FCI, it is precisely −0.5. (b) Analogous with inversion broken
g = 0.2. The intervening CDW exhibits σxy = 0. (c) Fluctu-
ations of the Berry curvature sampled on a 10×10 grid in the
boundary condition torus. Notice that fluctuations are heav-
ily suppressed in the insulating phases while the gapless-ness
of the SF causes a large variance. (d) Real space structure
factor at k = (π, π). Both the SF and FCI are translation
invariant while the CDW exhibits strong ordering. (inset)
Depicts the two-site unit cell square lattice and its primitive
vectors.

metry. Since first order phase transitions are insensitive
to perturbations, the splitting of the transition implies
that it must be continuous. This qualitative signature
avoids the usual difficulty associated with finite-size scal-
ing in small systems. Second, we develop a detailed field
theoretic description of this transition in terms of the low-
energy vortex fields. This description naturally accom-
modates the spontaneous breaking of lattice symmetry
in the Mott-insulating CDW state at half-filling.

Microscopic Model—We study the microscopic phase
diagram of a two-dimensional square lattice of Nitrogen-
Vacancy (NV) defects in diamond. Our model is closely
related to previous proposals for realizing FCI states in
ultracold polar molecules [18]. We will briefly sketch the
main ingredients below (for details see supplementary in-
formation [35]). Each NV constitutes a spin one (S = 1)
electronic degree of freedom and interactions occur via
the magnetic dipole-dipole interaction,

Hdd =
1

2

∑
i 6=j

κ

R3
ij

[
Si · Sj − 3(Si · R̂ij)(Sj · R̂ij)

]
, (1)

where, κ = µ0/(4π) and Rij connects sites i and j [36].
Hyperfine interactions between the NV electronic spin

and the Nitrogen nuclear spin (assuming isotope 15N),
lead to 6 states on each site, indexed |Sz, Iz〉, where

Sz = ±1, 0, Iz = ±1/2. Taking into account the zero-
field splitting as well as an applied magnetic field, it is
possible to arrange for the low-energy manifold on each
site to contain only 4 states, namely, the Sz = 0,+1
states. By applying suitable optical dressing, the effec-
tive dynamics can be further restricted to a two-level
system, with local dark states |0〉 = β

∣∣1,− 1
2

〉
− α

∣∣0, 1
2

〉
,

and |1〉 = s
∣∣0,− 1

2

〉
+ v

∣∣1, 1
2

〉
+ w(α

∣∣1,− 1
2

〉
+ β

∣∣0, 1
2

〉
).

The coefficients α, β are fixed by the hyperfine interac-
tion and applied static fields while the coefficients s, v, w
are tunable via dressing to the electronic excited state
A2. In the rotating frame, the states |0〉 and |1〉 are split
by an energy ∆, which is of order the hyperfine coupling
[20, 35].

The characteristic magnetic dipolar interaction
strength, κ/R3

0 is typically much weaker than ∆,
assuming R0, the nearest-neighbor lattice spacing,
is & 10nm. Thus, while the dipolar interaction can
‘flip-flop’ |10〉 ↔ |01〉 between sites resonantly, processes
which change the total number of 1 sites are ener-
getically suppressed. This emergent conservation law
allows us to consider the system in terms of conserved
hardcore bosonic operators, a†i = |1〉 〈0|i, described by
the Hamiltonian

HB = −
∑
ij

tija
†
iaj +

1

2

∑
i 6=j

Vijninj , (2)

where tij = −〈1i0j |Hdd |0i1j〉 and Vij =
〈1i1j |Hdd |1i1j〉 + 〈0i0j |Hdd |0i0j〉 − 〈1i0j |Hdd |1i0j〉 −
〈0i1j |Hdd |0i1j〉. In addition to boson number conser-
vation, HB is symmetric under lattice translations and
spatial inversion, but not generically under any further
lattice rotations unless the NV axis is perpendicular to
the lattice plane. We note that the elliptical polarization
of the optical dressing fields directly breaks time-reversal
symmetry [18, 35].

An FCI can be realized in this system with two main
kinetic ingredients: the single boson bands ought to be
“flat”, such that their dispersion is small relative to the
interactions, and they ought to carry a non-trivial Chern
number. Such topological flat bands may be achieved by
using different optical dressing parameters on the a and b
sites of a two-site unit cell (green and blue, inset Fig. 2);
this amounts to defining the hardcore boson slightly dif-
ferently on the a and b sublattices [16].

We now consider the many-body phases which arise at
filling fraction ν = 1/2 per unit cell (i.e. 1/4 particle per
site) in a topological flat band regime. The phase dia-
gram depicted in Fig. 1a is calculated using exact diago-
nalization for sizes up to Nsites = 36, Nparticles = 9. Two
microscopic parameters are varied: Φ0 is the azimuthal
angle of the NV axis relative to the lattice plane and θa
is a microscopic dressing parameter. Roughly speaking,
θa controls the magnitude of the effective interaction Vij
(with θa → 0 giving the strongest interactions), while Φ0
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controls the amount of band dispersion. These qualita-
tive differences in the microscopics yield a rich phase dia-
gram exhibiting both conventional and topological phases
(Fig. 1a).

A ν = 1/2 bosonic Laughlin FCI arises where the
dispersion is flattest and the dipolar tail of the inter-
action is weak. Turning up the interactions by varying
θa causes the system to spontaneously break the lat-
tice translational symmetry and form a commensurate
CDW insulator at momentum (π, π). Tuning away from
the flat band regime by adjusting Φ0 leads to a phase
transition into a superfluid, consistent with the micro-
scopics being dominated by band dispersion. We iden-
tify these phases numerically with five diagnostics: i)
ground-state degeneracy, ii) spectral flow under magnetic
flux insertion (superfluid response), iii) real-space struc-
ture factor 〈n(R)n(0)〉, iv) the many-body Berry cur-
vature σxy = 1

2π

∫ ∫
F (θx, θy)dθxdθy with F (θx, θy) =

Im(〈 ∂Ψ
∂θy
| ∂Ψ
∂θx
〉 − 〈 ∂Ψ

∂θx
| ∂Ψ
∂θy
〉) [37], and v) (for the FCI),

Laughlin quasi-hole counting [11, 35].

The above diagnostics unambiguously determine the
phases deep within each phase. The phase boundaries
sketched in Fig. 1a correspond to the regions where
the diagnostics become ambiguous due to the finite size
crossovers. The error bars in the phase diagram indicate
the width of the crossover region as observed in the five
diagnostics.

Whether the transition is continuous or first order is
hard to extract directly by conventional methods from
such small size numerics. So we use a trick: the known
critical theories describing the direct SF↔FCI transition
require a discrete symmetry, such as inversion, to pro-
tect them. Thus, if breaking inversion perturbatively in
the microscopic model introduces a Mott insulator be-
tween the SF and FCI phases we can conclude that the
underlying transition was continuous.

To test this, we introduce a weak staggering g to
the horizontal nearest neighbor hopping, ti,i+x̂ → (1 +
g)siti,i+x̂, where si is 0 (1) on the a (b) sublattice.
We have investigated the phase diagram with g =
0.2, 0.3, 0.4; the phase diagram with g = 0.2 is shown
in Fig. 1b using the same numerical diagnostics as before
(Fig. 2) [35]. The introduction of staggering indeed splits
the FCI to SF transition revealing an intermediate CDW
insulator. We view this as strong evidence that the tran-
sition at g = 0 is continuous and described by the field
theory we develop below.

Field theory—In order to capture the phase transitions
seen in Fig. 1, any long-wavelength description must be
able to simultaneously accommodate a ν = 1/2 Laughlin
state, the superfluid and the spontaneous breaking of lat-
tice symmetry in the CDW insulator. Previous work [34]
considered the case where the Mott insulator is at inte-
ger filling and thus need not break translational symme-
try. Here, we will present an alternate theory for bosons
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FIG. 3. (a) Magnetic Brillouin zone for vortex fields φvlα in
Landau gauge. Circles indicate dispersive minima and where
the slow vortex fields are defined. (b) Two parameter phase
diagram of theory (4) without inversion breaking. Slice in r, v1
holding v2 < v3 < 0, w2 < 0 and w1, v3, w3 > 0 and u > 0
large enough to stabilize the potential, yields an inversion
breaking CDW with (π, π) ordering and a superfluid with
(π, π) current order. (c) Same phase diagram with g 6= 0
breaking inversion.

at half-integer filling, which takes into account the fact
that the CDW insulator must spontaneously break lattice
symmetry [38, 39]. En passant, our new theory provides
a physical representation of the transition which empha-
sizes the role of vortex dynamics.

We begin by briefly reviewing the effect of half-filling
on the vortices of a superfluid state on a rectangular lat-
tice [40, 41]. The vortices see the original particles as
magnetic flux quanta [42, 43] and thus, on average, feel
half a flux quantum per plaquette (of the dual lattice).
This requires the translational symmetries of the vor-
tex theory to be augmented by a gauge transformation.
The resulting Tx and Ty operators satisfy the “magnetic”
translation algebra TxTy = −TyTx. The vortex band-
structure must have an even number of minima, pro-
tected by this translation algebra. If these minima are
not at inversion symmetric points in the magnetic Bril-
louin zone, then inversion symmetry I requires that the
number of minima be a multiple of four (Fig. 3a).

In the minimal case there are four such minima at mo-
menta ±k0,±k0 +(0, π) (in Landau gauge). A soft-mode
expansion of the vortex field near these minima leads to
four flavors of vortices which we label φvlα for l = 0, 1 and
α =↑, ↓, as in Fig. 3a. The symmetry operators act as
follows:

I : φv → τxφ
v

Tx : φv → eik0·x̂τ
z

σxφv

Ty : φv → eik0·ŷτ
z

σzφv (3)

where the τ (σ) Pauli matrices act on the α (l) index and
k0 is the momentum of the 0 ↑ field.
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In the superfluid state, all of these vortices are uncon-
densed. When any combination of them condenses, the
superfluid order is destroyed and the translation symme-
try is broken, leading to insulating density wave states
[35, 40]. Remarkably, the ν = 1/2 Laughlin state arises
when the vortices form an integer quantum Hall state
[44–48]. This motivates the following field theory which
can interpolate between the FQH, superfluid, and CDW
states:

L =
1

2π
Ae∂a+

1

2π
b↑∂b↓ − 1

2π
a∂(b↑ + b↓)

+
∑
l

|(∂ − ibτx)φl|2 − V ({φl}), (4)

where the notation a∂b ≡ εµνλaµ∂νbλ. Here, a and bα

are internal U(1) gauge fields minimally coupled to the
complex scalar fields φlα; Ae represents a background
external gauge field used to probe the underlying boson
current jµ = 1/2πεµνλ∂νaλ. The Chern-Simons terms
bind a flux quantum of b↑/↓ to φl↓/↑. These flux-φlα
composites represent the original vortex fields φvlα. Under
the action of the lattice symmetries, φl can be taken to
transform as φvl in Eq. (3), while the gauge fields b are
invariant under Tx, Ty and swap under I.

The potential term V = rφ†φ + V4 + · · · includes all
other terms compatible with the physical and gauge sym-
metries. At quartic order, there are seven couplings,

V4 = u(φ†φ)2 + v1

∑
l

|φl↑φl↓|2 + v2

∑
α

|φ0αφ1α|2

+ v3(|φ0↓φ1↑|2 + |φ1↓φ0↑|2) + w1

∑
α

φ∗20αφ1α

+ w2φ
∗
0↑φ1↑φ

∗
0↓φ1↓ + w3φ

∗
0↑φ1↑φ

∗
1↓φ0↓ + c.c. (5)

This theory Eqs. (4,5) is one of the central results of the
Letter. It is capable of describing all three phases found
in the microscopic model: (1) When φlα are uncondensed
(〈φlα〉 = 0) they can be integrated out, yielding the effec-
tive theory of the ν = 1/2 Laughlin state [30]. (2) If one
of the φlα condenses, bα is gapped by the Anderson-Higgs
mechanism; the resulting theory describes a Mott insu-
lator which, as shown below, breaks translation symme-
try. (3) If both bα gauge fields are Higgsed, the resulting
theory L = 1/(2π)Ae∂a + (∂a)2 + · · · is the usual dual
description of a superfluid.

The pattern of inversion and translation symmetry
breaking in these phases follows from the behavior of the
simplest gauge-invariant bilinears in the φ fields:

Oα0,0 ≡ φ†αφα Oαπ,0 ≡ φ†ασzφα
Oα0,π ≡ φ†ασxφα Oαπ,π ≡ φ†ασyφα. (6)

The operators Oαkx,ky carry momentum (kx, ky). The lin-

ear combination O±kx,ky ≡ O
↑
kx,ky ± O

↓
kx,ky

is inversion

even (odd). Depending on which O±kx,ky acquire expec-
tation values, we can determine how translation and in-
version are broken [49].

Figure 3b shows a particular 2-parameter slice of the
mean-field phase diagram of Eq. (4) which shows direct
continuous transitions between the FCI ↔ SF and FCI
↔ CDW phases, along with a continuous triple point
terminating the first order line separating the SF ↔
CDW phases. The CDW order is at momentum (π, π),
as seen in the numerics, while the superfluid has (π, π)
current order. The leading inversion breaking potential,
V = gφ†τzφ, splits the direct FCI ↔ SF transition by
an intervening CDW with width proportional to g as in
Fig. 3c. The topology of these phase diagrams matches
that observed numerically in Fig. 1.

Similar phase diagrams arise in other regions of the
coupling space; in all cases, the insulators exhibits com-
mensurate density order and the SF breaks a lattice sym-
metry. Likewise, a superfluid living in a band structure
with non-inversion symmetric minima will either con-
dense into a standing wave or break inversion The mi-
croscopic dispersion from Eq. (2) indeed exhibits non-
inversion symmetric minima, but the small accessible sys-
tem sizes prevent us from verifying the symmetry break-
ing pattern in the SF.

In summary, we have constructed a critical field the-
ory that describes transitions between FCI ↔ CDW ↔
SF, accommodating both spontaneous symmetry break-
ing and topological order. Surprisingly, this theory is
realized in a microscopic model of coupled electronic and
nuclear spins as arise in an engineered lattice of NV de-
fects. While our microscopic study has focused on NVs,
the universal physics predicted by the field theory should
be applicable to phase transitions in ultracold atomic
systems [21], polar molecules [16, 18] and Rydberg en-
sembles [50]. In such systems, we predict that the quasi-
adiabatic preparation of a fractional state can occur with
energy density

ε ∼ τ− 3ν
ν+1 (7)

where τ is the ramp time and ν is the correlation length
exponent of the field theory [51–53]. We leave the pre-
cise calculation of ν to future work, but note that in the
absence of gauge fluctuations, ν ≈ 0.7 [54] as for a two-
component XY transition. For small finite size systems,
we also expect the gap to close as ∼ 1/L since the dy-
namical critical exponent is z = 1. This opens the door
to preparing fractionalized states in near term quantum
optical simulators.
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Rev. Lett. 109, 186805 (2012).
[10] D. N. Sheng, Z.-C. Gu, K. Sun, and L. Sheng, Nat.

Comm. 2, 389 (2011).
[11] N. Regnault and B. Bernevig, Phys. Rev. X 1 (2011).
[12] J. McGreevy, B. Swingle, and K.-A. Tran, Phys. Rev. B

85, 125105 (2012).
[13] K. Sun, Z. Gu, H. Katsura, and S. Das Sarma, Phys.

Rev. Lett. 106, 236803 (2011).
[14] E. Tang, J.-W. Mei, and X.-G. Wen, Phys. Rev. Lett.

106, 236802 (2011).
[15] T. Neupert, L. Santos, C. Chamon, and C. Mudry, Phys.

Rev. Lett. 106, 236804 (2011).
[16] N. Yao, C. Laumann, A. Gorshkov, S. Bennett, E. Dem-

ler, P. Zoller, and M. Lukin, Phys. Rev. Lett. 109,
266804 (2012).
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Läuchli, J. Ye, and M. D. Lukin, Phys. Rev. Lett. 110,
185302 (2013).

[19] N. R. Cooper and J. Dalibard, Phys. Rev. Lett. 110,
185301 (2013).

[20] N. Y. Yao, S. D. Bennett, C. R. Laumann, B. L. Lev,
and A. V. Gorshkov, (2015), 1505.03099.

[21] M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J. T.
Barreiro, S. Nascimbene, N. R. Cooper, I. Bloch, and
N. Goldman, arXiv.org (2014), 1407.4205v2.

[22] C. Laumann, R. Moessner, A. Scardicchio, and
S. Sondhi, Phys. Rev. Lett. 109, 030502 (2012).
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