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We study the spin Hall effect (SHE) in disordered π-conjugated organic solids, where individual
molecules are oriented randomly and electrical conduction is via carrier hopping. The SHE, which
arises from interference between direct (i → j) and indirect (i → k → j) hoppings in a triad
consisting of three molecules i, j and k, is found to be proportional to λ(ni×nj+nj×nk+nk×ni),
where λ is the spin admixture of π electrons due to the spin-orbit coupling and ni is the orientation
vector of molecule i. Electrical conductivity σqq (q = x, y, z) and spin-Hall conductivity σsh are
computed by numerically solving the master equations of a system containing 32×32×32 molecules
and summing over contributions from all triads in the system. The obtained value of spin Hall angle
Θsh, is consistent with experimental data in PEDOT:PSS, with a predicted temperature dependence
as log Θsh ∼ T−1/4.

PACS numbers: 71.70.Ej, 72.25.Dc, 72.80.Le, 72.20.Ee

Spin Hall effect (SHE), which enables a direct con-
version between electric field and spin current [1], is a
fundamental material property critical to spintronic ap-
plications and has been intensively studied in inorganic
materials in last decade [2]. Recently (inverse) SHE has
been successfully detected in organic devices, opening an
arena for manipulation and detection of pure spin cur-
rent [3, 4] in organic spintronics [5, 6], a rapidly growing
field motivated by the weak spin-orbit couplings (SOCs)
and hyperfine interactions (HFIs) in organics [7]. While
the SHE is adequately understood in crystalline inorganic
materials, little is known about the SHE in disordered
organic solids, where electrical conduction is via electron
hopping. The few theoretical works on the SHE in the
hopping regime [10, 11] are confined to the Dresselhaus
[8] and Rashba [9] forms of SOC, which are suitable for
crystalline inorganic semiconductors but become inappli-
cable to the organics. Furthermore, in these works, the
SHE appears only at the second order of SOC [10, 11],
which would render the SHE too weak to be detected in
organics. Here, using the newly developed understanding
of SOC in organics [12], we derive the SHE in disordered
π-conjugated organic solids. It is found that the SHE
originates from misaligned orientations of π-conjugated
molecules in a triad, and is present at the first order of
SOC. The spin-Hall conductivity and electrical conduc-
tivity, obtained by exactly solving the master equations
in a large system, are consistent with experiment. Our
work suggests that the SHE in organic solids may be tun-
able by controlling their morphology.

The organic materials used in devices are π-conjugated
molecules or oligomers in the form of dense films. The
sp2 hybridization in a π-conjugated molecule results in
its planar structure, whose orientation can be charac-
terized by the vector normal to the molecular plane,
ni = (sin θi cosφi, sin θi sinφi, cos θi)

T with (θi, φi) be-
ing the corresponding polar and azimuthal angles. The
dense-film form implies that the orientations of these

molecules are not identical. In the presence of SOC, the
eigenstates of π electrons in molecule i are not pure spin
states and must contain spin (and orbital) mixing [12],

|i+(−)〉 = |piz̃ ↑ (↓)〉+
ξ

2∆

[

− (+)i sin θi|piỹ ↑ (↓)〉

+ (−)e+(−)iφi |pix̃ ↓ (↑)〉+ i cos θie
+(−)iφi |piỹ ↓ (↑)〉

]

.

Here the subscript +(−) denotes the predominant spin
orientation of the state being parallel (antiparallel) to
the spin-quantization axis, which is fixed at the z-axis
throughout the paper. piq̃ (q = x, y, z) are the p orbitals
in the local coordinates so that piz̃ always represents π or-
bital and pix̃(ỹ) represent σ orbitals, ξ is the atomic SOC,
and ∆ is the energy splitting between π and σ orbitals.
For a π electron hopping from molecule i with orienta-
tion ni to molecule j with orientation nj , the hopping

amplitude 〈j±|V |i±〉 ≡ V̂ji can be expressed in the 2× 2
spin space as (see Supplementary Materials)

V̂ji =
∑

q=x,y,z

[

nq
in

q
jv

q
ji1̂−i

ξ

2∆
σ̂qequvn

u
i n

v
j (v

u
ji+vvji)

]

, (1)

where 1̂ is the unit matrix, σ̂q the Pauli matrix, equv
the antisymmetric unit tensor of rank three, and vqji
the hopping integral between two p orbitals at molecules
i and j with their orientations both along the q-axis.
By assuming vxji = vyji = vzji = V 0

ji, Eq. (1) becomes

V̂ji = V 0
ji[ni · nj 1̂ − iλσ̂ · (ni × nj)] with λ = ξ/∆. In

a densely packed organic solid, the molecular-orientation
variation among neighboring molecules should be grad-
ual (i.e., small angle θij between ni and nj) to avoid an
otherwise large steric force [13]. Since ni ·nj ≃ 1− θ2ij/2

and ni ×nj ≃ θij , to the first order of θij , V̂ji is approx-
imately

V̂ji ≃ V 0
ji[1̂− iλσ̂ · (ni × nj)] ≃ V 0

jie
−iλσ·(ni×nj). (2)

Equation (2) indicates that because of the SOC and
misalignment of π orbitals among different molecules, an
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FIG. 1: (color online) Triad with three molecules oriented
along ni (i = 1, 2, 3). The SHE is proportional to N123/2,
the area of the triangle formed by (θi,φi) on a unit sphere.

electron attains an additional phase shift after each hop.
This phase shift, to the first order of SOC, does not al-
ter the hopping probability between two sites (a bond),
V̂ij V̂ji = V 0

ijV
0
ji, but will manifest itself in a triad, whose

importance in the hopping transport was first recognized
by Holstein when studying the Hall effect [14]. The prod-
uct of three hopping integrals over a triad loop contains
a net phase shift,

V̂ikV̂kj V̂ji = V 0
ikV

0
kjV

0
ji(1̂ − iλσ̂ ·Nijk). (3)

Geometrically, Nijk ≡ ni×nj+nj×nk+nk×ni is twice
of the area of a triangle with its vertices on the surface of
a unit sphere (Fig. 1), and is finite when the molecular
orientations in a triad are different from one another, as
in a disordered organic solid. On the other hand, when
the π orbitals are all aligned, Nijk vanishes and so does
the SHE. We emphasize that it is this misalignment of π
orbitals that unveils the SHE at the first order of SOC,
a physics not captured before. Hence the SHE in organ-
ics may be tuned by controlling the degree of molecular
alignment during the film growth/deposition process. It
should be noted that the HFI, another important inter-
action influencing spin dynamics in organics, cannot give
rise to the SHE because the HFI does not affect the hop-
ping integral and causes no interference among different
electron paths [15, 16].

Hopping electrical transport can be understood by
studying the change of real-space electron distribution
in the presence of external fields. Since the SHE involves
spin current, we express the general electron distribution
at site i as f̂i = f c

i 1̂+ σ̂zf
s
i with f c

i (f s
i ) being the charge

(spin) density and the spin-quantization axis along the
z-axis. In equilibrium, the system is nonmagnetic and
f̂i = f0

i 1̂ ≡ [1 + eβ(ǫi−µ)]−11̂, where ǫi is the electron en-
ergy at site i, µ the Fermi level, and β = 1/kBT with kB
and T being the Boltzmann constant and temperature.
In the presence of an electric field, the dynamic of f̂i is

described by the master equation,

df̂i
dt

=
∑

j

{

f̂j(1− f̂i)[wji +
∑

k

(1− f̂k)σ̂zw
e
jki]

− f̂i(1 − f̂j)[wij +
∑

k

f̂kσ̂zw
h
jki]

}

, (4)

where wij is the direct electron hopping probability from
sites i to j, or equivalently, the direct hole hopping from

j to i, and w
e(h)
jki ∝ λNz

jki is the indirect hopping prob-
ability from j to i for electron (hole) through an inter-
mediate site k. The first (second) term at the right-hand
side of Eq. (4) is the total electron (hole) hopping from
j to i. For generality, the applied electric field has a fi-
nite frequency, ω, and the dc transport properties can be
obtained in the limit of ω → 0.
In the linear-response regime, the change in electron

distribution, δf̂i ≡ f̂i − f01̂, is small and can be char-
acterized by a deviation in its electrochemical potential
from the Fermi level µ in equilibrium, δµ̂i,

δf̂i = βf0
i (1 − f0

i )δµ̂i ≡ βf0
i (1 − f0

i )(δµ
c
i + σ̂zµ

s
i). (5)

And the electric field affects the hopping via wji/w
0
ji =

we
jik/w

e0
jik = wh0

jik/w
h
jik = 1 − βeE · (Rj −Ri)/2, where

w0
ji, w

e0
jki, and wh0

jik are the values wji, w
e
jki, and wh

jik in
equilibrium, and Ri is the coordinates of site i. Accord-
ingly, the master equations in Eq. (4) reduce to coupled
linear equations of δµc

i and µs
i,

iωCi
µs
i

e
=

∑

j

µs
j − µs

i

eZij
+ e2β

∑

jk

VjW
z
jki, (6)

iωCi
δµc

i

e
=

∑

j

Vj − Vi

Zij
+ eβ

∑

jk

µs
jW

z
jki. (7)

Here Vi = δµc
i/e − E · Ri, Ci = e2βf0

i (1 − f0
i ), Z

−1
ij =

e2βf0
i (1−f0

j )w
0
ij = e2βf0

j (1−f0
i )w

0
ji, which is symmetric

under the interchange of i and j, and the effective three-
site hopping probability,

W z
jki ≡ f0

j (1− f0
i )(1− f0

k )w
e0
jki + (1− f0

j )f
0
i f

0
kw

h0
jki, (8)

is antisymmetric under the interchange of any pair of
subscripts. Once the solutions µs

i and δµc
i are found, the

spin current is evaluated according to its definition,

js ≡
e

Ω

∑

i

Ri
df s

i

dt
=

iω

Ωe

∑

i

RiCiµ
s
i , (9)

with Ω being the volume of the system, and the spin-
Hall conductivity can be obtained via σsh = jsy/E, with
jsy being the y-component of js and E along the x-axis.
Equations (6) and (7) reveal the key role played by

the three-site hopping W z
jkl in both the SHE and ISHE.

Through W z
jkl , a change in Vi due to an applied electric
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field can result in a change in spin distribution µs
i and

therefore a spin current, i.e., the SHE, and conversely, a
change in µs

i , can lead to a change in δµc
i or an electric

motive force, i.e., the ISHE.
To reliably calculate the dc SHE in a disorder system,

proper summation and average over a large system are es-
sential. In the literature of hopping Hall effect, the com-
mon approach is to identify “representative” triads that
control the overall properties of the entire system [17],
which involves uncontrollable approximations. Here, in-
stead, we numerically solve the master equations exactly
in a sufficiently large system, which is conceptually sim-
ple with a guaranteed accuracy. For a system consisting
of N molecules, Eqs. (6) and (7) have approximately 2N
equations, which can be reduced to two sets of N equa-
tions if the three-site hopping is treated as perturbation.
We can then first solve Eq. (7) without the three-site
terms and denote the obtained solution as V 0x

i and V 0y
i

for E along the x- and y-axes, respectively. The solu-
tion to Eq. (6) after W z

ijk is included can be written

as µs
i = e2β

∑

jkl[(g + iωc)−1]ijV
0x
j W z

jkl , where matri-

ces gij ≡ Z−1
ij − δij

∑

k Z
−1
ik and cij ≡ Ciδij . Since yi is

related to V 0y
i via yi = (iωE)−1C−1

i (g + iωc)ijV
0y
j , the

spin current jsy in Eq. (9) is jsy = iω(ΩE)−1
∑

i yiCiµ
s
i =

−βe2(ΩE)−1
∑

jki W
z
jkiV

0y
j V 0x

i . Using the antisymmet-
ric property of W z

ijk , σsh can be expressed as

σsh = −
e2β

6ΩE2

∑

ijk

W z
ikj [(V

0
i −V 0

k )× (V 0
k −V 0

j )]z, (10)

where the projections of V 0
i on the q-axis give the electro-

chemical potentials for the case when the external field
E is directed along the q-axis. This expression general-
izes that due to Butcher and Kumar for calculating the
Hall mobility [18]. Note that Eq. (10) is independent of
ω and can therefore be used to calculate the dc SHE, in
which V 0

j is the solution to 0 =
∑

j Z
−1
ij (V 0

j − V 0
i ) with

a dc bias applied along the corresponding axes. The ob-
tained V 0

i can also be used to evaluate the dc electrical
conductivity of the system via [18]

σqq =
1

2ΩE2

∑

ij

Z−1
ij (V 0q

i − V 0q
j )2. (11)

Experimentally the organic material where
the ISHE was first observed is poly(3,4-
ethylenedioxythiophene):poly(styrenesulfonate) (PE-
DOT:PSS) [3]. The I-V characteristics of this material
is found linear [3], indicating that the electrical con-
ductivity is independent of bias and that carriers must
exist before a bias is applied. Thus the system should
have a large density of states near the Fermi level.
Moreover, the measured temperature dependence of the
conductivity in PEDOT:PSS [19] follows the Mott’s
variable range hopping (VRH), log σxx ∼ T−1/4, through

an impurity band [20]. The impurity-band transport
was also proposed to explain many properties of charge
and spin transport in organic spintronic devices [21].
In addition, recent experimental and theoretical studies
[22, 23] suggest that bipolaron formation in PEDOT is
unimportant. These evidences suggest that the hopping
probability in PEDOT:PSS have the Miller-Abrahams
form [24], where electron-phonon coupling is treated
perturbatively,

Z−1
ij = νe−2αRjie−

β
2
(|ǫi−µ|+|ǫj−µ|+|ǫji|). (12)

Here the hopping integral V 0
ji is assumed to exponentially

decay with the hopping distance Rji = |Rj −Ri|, V 0
ji =

V0e
−αRji with α−1 being the localization length of π-

electron wave functions in the molecules, ǫji = ǫj−ǫi, and

ν = πV 2
0 γ

2/~2 with γ2 depending only on the electron-
phonon coupling γ and phonon properties. By using the
same weak electron-phonon approximation, the three-site
hopping probability (see Supplementary Materials) is

W z
jki =

λNz
jki

V0
~ν2e−α(Rjk+Rki+Rij)

[

exp
(

−
β

2
(|ǫj − µ|

+ |ǫk − µ|+ |ǫji|+ |ǫki|)
)

+ i ⇋ j + i ⇋ k
]

. (13)

In our numerical calculations, the system consists of
32×32×32molecules forming a cubic lattice with a lattice
constant of a. The site energy ǫi is uniformly distributed
in the interval of [−ǫ0/2,ǫ0/2], reflecting the disordered
environment of the molecules, and the Fermi level µ in
equilibrium is set zero, i.e, the system has a finite den-
sity of state at the Fermi level, as in PEDOT:PSS. αa
is fixed at 2, i.e., the electron wave functions can extend
to neighboring sites, consistent with the relatively delo-
calized wave functions observed from infrared-absorption
spectra [25]. Since the measured electrical transport in
PEDOT:PSS is anisotropic, this isotropic lattice should
be regarded as an “averaged” structure of PEDOT:PSS
with the electrical conductivity being the geometric mean
of two conductivities along the x- and y-axes. The SOC
parameter λ is estimated 10−3, from the value of T6,
which has a very similar structure as PEDOT [12]. Indi-
vidual molecular orientations are random. Hopping be-
tween any bond (i,j) and among any triad (i,j,k), Z−1

ij

and W z
jki in Eqs. (12) and (13), in the entire lattice are

allowed. Hence possible VRH is automatically included.
Nevertheless, the exponential decay in wave functions al-
lows us to introduce a cut-off in the hopping distance, be-
yond which the hopping integral can be neglected. Such a
cut-off facilitates application of sparse-matrix techniques
in solving the master equations.
Figure 2 shows the calculated electric conductiv-

ity along different directions, σxx and σyy, the spin-
Hall conductivity σsh, and the spin-Hall angle, Θsh ≡
σsh/(σxxσyy)

1/2 = σsh/σqq [26], as a function of tem-
perature for different energy disorders, measured by ǫ0.
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It is seen that σxx and σyy are virtually identical for
various disorder strengths, indicating that the system is
sufficiently large and that the numerical results are both
convergent and reliable. Logarithm of σqq, when plot-
ted vs T−1/4, are linear over a large temperature range,
meaning that electrical transport in the system is indeed
VRH. At room temperature, Θsh ∼ 10−7, in good agree-
ment with the measured value, and σqq ∼ 0.1− 1 S/cm,
close to the geometric mean of measured conductivities,
1.6× 10−3 and 660 S/cm along the x- and y-axes [3]. In
addition, we see that log(σsh,Θsh) ∼ T−1/4 and that as
the disorder strength increases, the temperature depen-
dences in σqq , σsh, and Θsh are enhanced.
Figure 3, which displays distributions of the square of

hopping distance, D(R2), and triad area, D(A) at differ-
ent temperatures, further illuminates the VRH nature in
this system. The distributions are measured as D(R2) =
∑

ij |Iij(R
2
ij = R2)|/

∑

ij |Iij | where Iij = Z−1
ij (V 0q

i −

V 0q
j ), and D(A) =

∑

ijk |W
z
ijk(Aijk = A)|/

∑

ijk |Wijk|,
where Aijk is the area of the triad (i, j, k). We see that
as the temperature decreases, distributions D(R2) and
D(A) become broader and the peaks shift toward the
larger values. The averaged values, R2 ≡

∑

R2D(R2)
and A ≡

∑

AD(A), are both proportional to T−1/2, as
shown in Fig. 3d, consistent with the VRH. The temper-
ature dependence of Θsh, according to Fig. 3e, is weaker
than that of σxx.
The numerical results on σsh and Θsh can be under-

stood from the Mott’s theory, where the conductance

Z−1 ∼ exp
[

− 2αr −
ǫ0a

3

(4πr3/3)kBT

]

(14)

reaches maximum at the most probable hopping dis-
tance, r̄ = [9ǫ0a

3/(8παkBT )]
1/4, and accordingly

σxx ∼ (Z−1)max ∼ e−8αr̄/3 = e−(T0/T )1/4 with T0 =
512(αa)3ǫ0/(9πkB). This expression of T0 would give a
value of 1.0 × 106 K for ǫ0 = 0.6 eV and αa = 2, which
is close to the value of 1.6 × 106 K, from fitting the re-
sults in Fig. 2 into σqq ∼ exp[−(T0/T )

−1/4]. Both values
are similar to the experimental value of 3× 106 in a PE-
DOT:PSS system [19]. Expressing Eq. (13) as

W z ∼ exp
[

− 3αr −
2ǫ0a

3

(4πr3/3)kBT

]

, (15)

and substituting r by r̄, we estimate σsh and Θsh as

σsh ∼ W z ∼ e−13αr̄/3,Θsh =
σsh

σqq
∼ e−5αr̄/3. (16)

Since r̄ ∼ T−1/4, both log σsh and logΘsh are pro-
portional to T−1/4. The exponential in Θsh, 5αr̄/3,
is smaller than that in σqq , 8αr̄/3, which explains the
weaker temperature dependence in Θsh than in σqq . As
ǫ0 decreases, which corresponds to an increase in the den-
sity of state at the Fermi level, (ǫ0a

3)−1, or the doping,
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FIG. 2: (Color online) Electrical conductivity σxx (a) and
σyy (b) , spin-hall conductivity σsh (c), and spin-hall angle

Θsh (d) as a function of T−1/4 for different values of energy
disorder ǫ0. Solid, dashed, and dot-dashed lines correspond
to ǫ0 = 0.6, 0.4, and 0.2 eV, respectively. The parameters are
αa = 2, λ = 10−3, ν = 3× 1011 s−1, and V0 = 0.1 eV.
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FIG. 3: (Color online) D(R2) (bars) and D(A) (circles) for

T = 300 (a), 120 (b), and 40 K (c). (d) R2 (circles) and A

(squares) as a function of T−1/2. (e) Comparison of temper-
ature dependences in Θsh (squares) and σxx (circles). σ0 and
Θ0 are the values of σxx and Θsh at T = 320 K. The energy
disorder is ǫ0 = 0.6 eV. Other parameters are as in Fig. 2.

T0 will decrease, and consequently, both Θsh and σqq will
increase and exhibit a weaker temperature dependence.
In summary, we have developed a theory of the SHE

in disordered organic solids. The SHE is found to oc-
cur at the first order of SOC, due to misalignment of
π-conjugated molecules in a disordered solid. We have
numerically solved the transport equations in a large sys-
tem and sum over all triads to obtain the spin-Hall con-
ductivity. The calculated values of spin-Hall angle and
electrical conductivity are consistent with experimental
measurements. Our theory suggests a tunable SHE in
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organic solids via their morphology.
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