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We propose a family of structures that have “Dirac loops”, closed lines of Dirac nodes in momen-
tum space, on which the density of states vanishes linearly with energy. Those lattices all possess
the planar trigonal connectivity present in graphene, but are three dimensional. We show that their
highly anisotropic and multiply-connected Fermi surface leads to quantized Hall conductivities in
three dimensions for magnetic fields with toroidal geometry. In the presence of spin-orbit coupling,
we show that those structures have topological surface states. We discuss the feasibility of realizing
the structures as new allotropes of carbon.

Introduction.− In honeycomb lattices, the existence of
the Dirac point results from the planar trigonal connec-
tivity of the carbon bonds and its sub-lattice symmetry
[1]. Less well known are “Dirac loops”, three dimensional
(3D) closed lines of Dirac nodes in momentum space, on
which the energy vanishes linearly with the perpendic-
ular components of momentum [2]. To date there are
no experimental observations of Dirac loops, and they
were predicted to exist only in 3D Dirac semimetals [3]
in which the parameters such as interactions and mag-
netic field are finely tuned [2].

Theoretically, graphene is not the only possible lat-
tice realization with planar trigonally connected atoms
[4]. It is therefore natural to ask if there are variations
on the honeycomb geometry that might produce exotic
Fermi surfaces with Dirac-like excitations and topologi-
cally non-trivial states. In this Letter, we propose a fam-
ily of trigonally connected 3D lattices that admit sim-
ple tight-binding Hamiltonians having Dirac loops, with-
out requiring any tuning or spin-orbit coupling. Some
of these structures lie in the family of harmonic honey-
comb lattices, which have been studied in the context
of the Kitaev model [6–10], and experimentally realized
in honeycomb iridates [11]. The simplest example is the
hyper-honeycomb lattice, shown in Fig. 1a.

We derive the low energy Hamiltonian of this family of
systems, and analyze the quantization of the conductivity
and possible surface states. Even though these systems
are 3D semimetals, their Fermi surface is multiply con-
nected, with the shape of a torus, and highly anisotropic.
When a magnetic field with toroidal geometry is applied,
we find that the Hall conductivity is quantized in 3D at
sufficiently large field. Additional spin-orbit coupling ef-
fects can create topologically protected surface states in
these crystals. We claim that in the presence of spin-orbit
coupling, these structures conceptually correspond to a
new family of strong 3D topological insulators [12, 13].
We finally discuss the experimental feasibility of realizing
those structures as new allotropic forms of carbon.

Tight-binding lattice.− Our discussion starts with the
simplest structure, the hyper-honeycomb lattice (see Fig.

1a). All atoms form three coplanar bonds spaced by
120◦. The tight binding basis is of the form ψα,k(r) =
φα(k) eik·r, with α = 1, 2, 3, 4 labeling the components of
a four vector Φk, which describes the amplitudes of the
electronic wavefunction on the four atoms in the unit cell.
The tight binding Hamiltonian satisfies the eigenvalue

equation HΦk = EΦk where Hα,β = t
∑
~δα,β

eik·
~δα,β and

t is the hopping energy between nearest neighbors sites
separated by the vector ~δα,β connecting an atom of the
kind α with its nearest neighbor of the kind β. The sum
is carried over all nearest neighbor vectors ~δα,β among
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FIG. 1. (Color online) Simple lattice structures where all
atoms are connected by three co-planar bonds spaced by 120◦.
a) The hyper-honeycomb lattice (H-0), with a four atom unit
cell. Atoms 1, 2 and 3 (xy plane); atoms 2, 3 and 4 (yz plane).
Atoms 1 and 2 form a vertical chain (black links); atoms 3 and
4 form horizontal chain (blue links). The chains are connected
by links (red) in the z-direction. b) An eight atom unit cell
(H-1). Atoms 1-4 create a vertical chain of hexagons along
the x-direction. Atoms 5-7 create a horizontal chain when
repeated in the y-direction.



2

any two given species of sites, α and β. In explicit form,

Hαβ = t


0 Θx 0 e−ikza

Θ∗x 0 eikza 0
0 e−ikza 0 Θy

eikza 0 Θ∗y 0

 (1)

where Θi = 2eikza/2 cos(
√

3kia/2) with i = x, y and a
the interatomic distance.

This Hamiltonian has a zero energy eigenvalue along
the curve defined by kz = 0 and

4 cos
(√

3kxa/2
)

cos
(√

3kya/2
)

= 1. (2)

Eq. (2) defines a zero energy line k0 = (kx(φ), ky(φ), 0)
shown in the solid white lines in Fig. 2a, where φ is the
cylindrical polar angle with respect to the center of the
Brillouin zone (BZ) at the Γ point. The reciprocal lat-
tice is generated by the vectors b1 = (2π/

√
3a, 0, π/3a),

b2 = (0, 2π/
√

3a,−π/3a) and b3 = (0, 0, 2π/3a), as
shown in Fig. 2b, and has four high symmetry points,
Γ, R, X, and Z. The 3D BZ has four-fold rotational sym-
metry around the [001] direction. The energy spectrum of
Hamiltonian (1) has four bands, shown in Fig. 2c, where
the two lowest energy bands are particle hole-symmetric
and cross along the nodal lines, in the kz = 0 plane. The
bands displayed in Fig 2c follow the path shown in the
triangular line of panels a, b, with the point R located in
the middle of the flattened corners of the BZ.

Projected Hamiltonian.− Expanding the Φ eigenvec-
tors around the nodal line and projecting the Hamilto-
nian (1) in the two component subspace that accounts
for the lowest energy bands, the projected Hamiltonian
can be written in the Dirac-like form

Hp(q) = − [vx(φ)qx + vy(φ) qy]σx + vz(φ)qz σz , (3)

where q ≡ k(φ)−k0(φ) is the momentum measured away
from the nodal line, σx, σz are 2× 2 Pauli matrices (we
set ~→ 1) and

±Ek = ±
√

[vx(φ)qx + vy(φ) qy]2 + [vz(φ)qz]2 (4)

is the low energy spectrum. The quasiparticles of Hamil-
tonian (3) are chiral in that there is a Berry phase

i
∮
〈Φk|~∇kΦk〉 · d~k = π [14] associated with paths in mo-

mentum space that encircle the nodal line.
The Fermi velocities vi(φ) (i = x, y, z) are plotted in

Fig. 2d, and can be approximated by simple trigono-
metric functions. The quasiparticles disperse linearly in
the normal directions to the nodal line (Fig 2e) and are
dispersionless along the Dirac loop. In the cylindrical
moving basis shown in Fig. 2e, the velocities are given
by vz(φ), vρ(φ) and vφ(φ). Even though the nodal line
is not a perfect circle, the ratio vφ(φ)/vz(φ) is small and
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FIG. 2. (Color online) a) BZ in the kz = 0 plane showing the
Dirac loop lines (solid white). Black line: boundary of the BZ,
centered at the Γ point. b) 3D Brillouin zone. Black arrows:
directions of the reciprocal lattice vectors bi, i = 1, 2, 3. c)
Energy spectra of the four bands of Eq. (1) in units of t
plotted along the path shown in the red line of panels a) and
b). The low energy bands cross along the Dirac loop. d)
Velocity of the quasiparticles at the Dirac line in units of ta,
as a function of the cylindrical polar angle φ with respect to
Γ. In cylindrical coordinates, red: vz(φ); black: vρ(φ); blue:
vφ(φ). The orange and violet curves describe vx(φ) and vy(φ)
respectively. e) Red arrows: cylindrical moving basis around
the line of Dirac nodes. Toroidal Fermi surfaces for energies
E/t = 0.1, 0.2, 0.3 and 0.4 around the Dirac loop.

oscillates with φ between 0 and 0.19. Away from half-
filling, the Fermi surfaces are toroids containing the nodal
line k0(φ), as shown in Fig. 2e. For small energies, the
cross-section is nearly circular, and the energy varies lin-
early with the distance from the loop. A similar analysis
can be done for the unit cell shown in Fig. 1b, which has
8 carbon atoms in the unit cell. In that case, the tight
binding Hamiltonian is an 8×8 matrix with 8 different
bands. This Hamiltonian can be projected into the low
energy states, resulting in a Hamiltonian with the same
form as Eq. (3).

The above structures are merely two in a hierarchy
of possible lattices that can be made with perpendicular
zigzag chains of trigonally connected carbon atoms. We
denote these structures with two integers (nx, ny), where
nx (ny) is the number of vertical (horizontal) complete
honeycomb hexagons contained in the unit cell. In this



3

notation, the hyper-honeycomb lattice shown in Fig.1a
describes a (0, 0) lattice, while Fig. 1b has one complete
honeycomb hexagon along both the vertical and horizon-
tal zigzag chains in the unit cell, and hence is a (1, 1)
structure. The symmetric higher order structures (n, n)
belong to the family of harmonic honeycomb lattices, de-
noted as H-n, with n ∈ N [11]. In this family, the screw
axis symmetry is preserved and they all display Dirac
loops at zero energy around the Γ point, with the H-0
case shown in Fig. 1a being the simplest atomic chain
arrangement. In the n → ∞ limit, those structures de-
scribe a single layer of graphene. Asymmetric structures
where nx 6= ny have a very anisotropic unit cell and their
nodal lines are displaced in the BZ.

The simplest Hamiltonian that captures the physics
described in Hamiltonian (3) is a minimal model where
we approximate the nodal line (2) by a circle with the
average radius k0 ≡ 〈kρ(φ)〉 ≈ 1.61a−1. The in-plane
velocity is independent of the angle φ,

H0(q) = −vρqρσx + vzqzσz , (5)

where qρ = kρ−k0, is a small variation in the cylindrical
radial momentum k2ρ ≡ (k2x + k2y) away from the radius
of the nodal line, and vρ ≡ 〈vρ(φ)〉 ∼ 1.22ta, and vz ≡
〈vz(φ)〉 ∼ 1.32ta, are the average velocities in the ρ̂ and ẑ
directions. When the nodal line is a perfect circle, vφ = 0.
The density of states per volume varies linearly with the
energy D(E) = k0E/(2πvρvz), including a factor of two
for the spin degeneracy.

Charge transport.− For short range impurities, the DC
conductivity can be calculated self-consistently at zero
temperature [15]. Going back to the projected Hamil-
tonian (3), we define the Green’s function Ĝk(ω) =
[ω − Hp(k) − Σ̂(ω) + i0+]−1, where the 2×2 matrix

Σ̂(ω) = V 2
0

∑
k Ĝk(ω) is the self-energy due to a local

quenched disorder potential V0 [16].
At zero frequency, the self consistent solution of the

self-energy Σ̂(0) = iΓ is diagonal and purely imagi-
nary, with Γ the scattering rate. In the minimal model
(5), Γ ≈ t exp{−1/[V0D(V0)]}. The DC conductivity in
the direction n̂ is σn̂(0) = e2tr

∑
k v̂n̂Â(k, 0)v̂n̂Â(k, 0),

where Â(k, 0) = −2ImĜk(0) = −2Γ/(E2
k + Γ2) is the

static spectral function, e is the electron charge and
v̂n̂ = n̂ · ∇qHp is the velocity operator projected along
the n̂ direction.

In 3D, the conductivity has units of e2/h divided by
length (restoring ~) [17, 18]. When Γ � t, the conduc-
tivity is independent of the scattering rate, as expected
[19], and gives

σn̂(0) =
Cn̂
a

e2

πh
, (6)

per spin, where Cn̂ is a non-universal dimensionless geo-

metrical factor. In the H-0 lattice,

Cz ≈ 1.79, Cx = Cy ≈ 0.75. (7)

In the minimal model (5), Cz = k0avz/vρ ∼ 1.76, while
Cρ = 3k0avρ/(8vz) ∼ 0.55 for transport along any direc-
tion in the plane of the Dirac loop, in qualitative agree-
ment with (7). Those values contrast with the theoretical
conductivity (per spin) of Dirac fermions in 2D for uni-
tary disorder, σ(0) = e2/(πh) [19, 20].

3D Quantum Hall effect.− In the presence of a uni-
form magnetic field, the minimal model (5) becomes
H0(ρ, z) = −vρσx(∂ρ − Aρ) + vzσz(∂z − Az), where

A = Az ẑ + Aρρ̂ + Aφφ̂ is the vector potential. In this
model, the application of a magnetic field along the z
axis, which can be described in the symmetric gauge
by A = 1

2Bzρφ̂, has no effect in the Hamiltonian (since
vφ = 0), and hence does not produce cyclotronic orbits.

Conversely, a toroidal magnetic field Bφφ̂ pointing
along the Dirac loop corresponds in the symmetric gauge
to a vector potential A = −Bφρẑ. Such a field can be cre-
ated with a uniform time dependent electric field applied
along the ẑ direction. Taking the square of the Hamilto-
nian (5), H2

0(ξ) = (
√
vρvz/`B)[(ξ2 − ∂2ξ )σ0 + σy], where

σ0 is the identity matrix, ξ ≡
√
vz/v0 (ρ/`B − kz`B) is

a dimensionless coordinate and `B =
√
h/Bφe is the

magnetic length. Rewriting the Hamiltonian in terms
of ladder operators of the 1D Harmonic oscillator, a =
(ξ + ∂ξ)/

√
2 and a† = (ξ − ∂ξ)/

√
2, the energy spectrum

has a zeroth LL and is the same as in conventional 2D
Dirac fermions in a magnetic field,

EN = sign(N)(
√

2vρvz/`B)
√
|N |, (8)

where N ∈ Z.
Although being a 3D semimetal, in a perfectly cir-

cular Dirac loop, the system has a 3D quantum Hall
effect [21–23] at any magnetic field Bφ. In more con-
ventional field geometries, the Hall conductivity of 3D
crystals was shown by Halperin [21] to be in the form
σij = e2/(2πh)εijkGk, where εijk is the antisymmet-
ric tensor and G is a multiple of some reciprocal lat-
tice vector (it could also be zero). Following the TKNN
analysis [24], a necessary and sufficient requirement for
quantized Hall conductivities in general is that the band
structure will open insulating bulk gaps at finite applied
magnetic field, and that the Fermi level will lie in one of
those gaps. In 3D, the quantum Hall effect has been ob-
served or predicted before only in systems with extreme
anisotropies [25, 26], or else in strongly anisotropic sys-
tems with Dirac quasiparticles, such as Bernal stacked
graphite [23], which are more easily susceptible to LL
quantization.

In the toroidal geometry of the magnetic field, each
Dirac cone in the loop contributes with (N + 1

2 )e2/h
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quanta per spin to the Hall conductivity. In cylindrical
coordinates, for a circular nodal line,

σzρ = 2
e2

h

∫
dk3

(2π)3
Im
〈
∂kρΦk|∂kzΦk

〉
= (2N + 1)

e2

h

∫
dφ

2π
k0 = (2N + 1)k0

e2

h
, (9)

accounting for the spin degeneracy 2, while σρφ = 0.

Hence, in the presence of a Bφφ̂ field, a radial current
along the ρ̂ direction creates a voltage difference along
the ẑ direction and vice versa. By adiabatic continuity,
the Hall conductivity is invariant under deformations of
the nodal line (up to a trivial scaling), provided that the
LL gaps do not close completely. Hence, nodal lines with
nearly circular shape will show quantized Hall conduc-
tivities in the toroidal field geometry whenever the Fermi
level lies in the energy gap, at finite magnetic field. This
property opens the prospect in the future for the observa-
tion of 3D quantum Hall effect in other classes of systems
that prove to have Dirac loops as well.

Topological surface states.− In the presence of spin-
orbit coupling effects, the surface states can acquire topo-
logical character. The spin orbit coupling can be included
through a trivial generalization of the Kane-Mele model
[27, 28] for the H-n lattice, HSO

ij =
∑
l it2(dil × dlj) · ~τ ,

where ij are next-nearest neighbor sites connected by
two nearest neighbor vectors dil, ~τ = (τx, τy, τz) is a
vector of Pauli matrices acting in the spin space, and
t2 = ∆SO/(3

√
3) gives the spin-orbit coupling gap. The

Rashba coupling is detrimental to the spin-obit coupling
gap, but is expected to be small when mirror symmetry
in the plane of the atomic bonds is preserved. In the H-0
lattice, the total Hamiltonian is an 8 × 8 matrix in the
Φk basis. In the general case, the Hamiltonian of the
H-n structure is a matrix with 23+n× 23+n components,
including the spin.

In Fig. 3, we show the energy spectrum of the H-0
and H-1 crystals in the presence of a spin-orbit coupling
t2 = 0.1t. We considered the geometry of an infinite
slab oriented along the y direction, with surfaces along
the x and z ones. The modes that cross zero energy are
surface states at the two [100] surfaces of the crystals.
All structures have two helical spin polarized modes per
surface, which cross at the center of the BZ, at the Γ
point. Those surface modes are topologically protected
by Kramers theorem, and describe a new possible family
of strong 3D topological insulators. Due to the four-
fold symmetry of the BZ, identical surface states can also
be found in the two [010] surfaces for a slab geometry
rotated around the ẑ axis by π/2. The [001] surfaces,
nevertheless, do not have those states.

Synthesis as a new carbon allotrope.− Due to π−π or-
bital interactions between the chains, H-n lattices could
likely be realized as metastable allotropic forms of carbon
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FIG. 3. (Color online) Energy bands in units of t in the
presence of a large spin-orbit coupling t2 = 0.1t (see text).
The crossed lines at zero energy are topological surface states
along the [100] direction of the crystal. Left: H-0 crystal;
right: H-1 crystal.

[5]. The planar trigonal bonding of the carbon atoms is
nevertheless quite robust. Simulations with Tersoff po-
tentials [29] indicate that hyper-honeycomb allotropes of
carbon atoms could be as stable, or even more stable
than other metastable allotropes such as diamond.

Although synthesis of this new family of carbon al-
lotropes can be challenging, the H-0 allotrope could
be synthetized in a layer by layer fashion using mono-
functionalized carbon chains of atoms in the alkyne or
alkynide groups [30]. Those groups can be coordinated
perpendicularly to a surface, in a way as to allow epitax-
ial polymerization in the form of a monolayer of oriented
chains [31]. Once the first layer is grown, the exposed
functional groups can be replaced with a new layer of
functionalized chains perpendicular to the first one [32].
The subsequent repetition of those two stages can lead
to a 3D lattice of carbon atoms deposited as a film on
the substrate surface. A similar method can be applied
for instance to the H-1 allotrope [33], as possibly to the
entire family of harmonic structures.

The realization of topological surface states in those
carbon allotropes can be very difficult due to the small-
ness of the spin-orbit gap, which is of the order of 0.1
meV (t2 ∼ 10−4t), as in graphene [34]. Nevertheless, a
substantial enhancement of the gap can be achieved by
chemically doping those structures with adatoms such
as thallium (Tl) [35]. In graphene, Tl adatoms are ex-
pected the create a spin-orbit gap of the order of 20meV
(t2 ≈ 0.02t) while keeping the planar trigonal bonds of
carbon intact and the Rashba coupling parametrically
small. We speculate that a similar enhancement of the
spin-orbit gap is possible in the 3D structures as well,
and will be considered somewhere else.
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Note.− During the preparation of this version of the
manuscript, we became aware of the recent experimental
observation of a line of Dirac nodes in Ca3P2 [36] and of
a related works on inversion symmetric crystals [37] and
graphene networks [38], which appeared after our original
preprint.
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