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Abstract: Using optical nanoresonator to realize extreme concentration of light at 
subwavelength nanoscale dimensions is of both fundamental and practical significance. 
Unfortunately, the optical cross section of an isotropic nanoresonator is determined by the 
resonant wavelength, which unfavorably limits the highest concentration ratio. Here we show 
that the cross section of a localized subwavelength resonator can be drastically enhanced, 
exceeding the size of wavelength by more than 3 orders of magnitude. A single microscopic 
nanoresonator could exhibit a macroscopic optical cross section. We further show that the 
enhancement can be implemented in simple dielectric structures that are readily compatible with 
optoelectronic integration. The giant optical cross section of a nano-object provide a versatile 
platform to create extremely strong light-matter interactions at nanoscale.   

 

 

  



Concentrating light into sub-wavelength dimensions is of great importance to many applications 
that require strong light-matter interactions, such as ultra-fast photodetectors [1], single molecule 
fluorescence imaging [2], and Raman spectroscopy [3]. Optical nanoresonators have been known 
as an effective way to concentrate light into sub-wavelength dimensions [4]. The concentration 
performance can be evaluated by the ratio between the optical cross section and the geometrical 
size of a nanoresonator. Thus, there are mainly two routes to improve the concentration ratio. 
The first is to reduce the size of the resonator. Rapid progress has been made in this direction. 
For example, emerging two-dimensional and plasmonic materials have shown great potentials 
for deep sub-wavelength resonators, which could lead to extreme concentration of light and 
improved optoelectronic performance [1,4–7]. However, the fundamental trade-off between field 
confinement and optical loss is likely to limit the smallest size of a useful resonator. The second 
route is to increase the optical cross section of nanoresonators. The progress in this direction has 
been staggered. The maximum cross section remains about the same regardless of the 
construction of a subwavelength nanoresonators. It is around a few hundreds of nanometers in 
the visible spectral range for almost all resonators, including metallic nanoparticles, 
semiconductor nanowires, graphene resonators and plasmonic slit resonators [8–11]. Limited 
cross section has unfavorably limited the highest concentration ratio. Thus, to drastically enhance 
the cross section represents an exciting opportunity towards unprecedented light concentration 
and extremely strong light-matter interactions, particularly when it is combined with deep sub-
wavelength nanoresonators. 

However, the maximum optical cross section of a single nanoresonator is fundamentally limited 
by the resonant wavelength ߣ଴ . A nanoresonator with an isotropic angular response has a 
maximum absorption cross-section of 
଴ߪ  ൌ (1) ߨ଴ଶ/4ߣ
We will refer Eq. (1) as the isotropic limit, which has been known for long time for the optical 
cross section of electronic transitions in atoms. Very recently, Eq. (1) was also explicitly shown 
for arbitrary dielectric and plasmonic nanoresonators [12,13].  

Tremendous research efforts have been devoted to overcoming the isotropic limit. For example, 
Ruan and Fan recently [14] suggested using almost-degenerate plasmonic modes in a narrow 
spectral range to achieve super-scattering of nanoparticles, i.e. large scattering optical cross 
sections. However, this approach is fundamentally limited by the number of degenerate 
plasmonic modes. It hardly reaches a cross section greater than 10 ߪ଴. On the other hand, it is 
also well understood that restricting the angular distribution of the resonator’s radiation can 
enhance the cross section. For example, a resonator with a dipolar radiation profile has a cross 
section of 1.5 ߪ଴ [12]. Polman, et. al [15] also recently showed that selectively exciting the local 
current in a nanoresonator can modify the angular response and thus enhance the cross section. 
However, the angular engineering approach is also limited to a few times of enhancement, unless 
an extended resonator with a size significantly larger than the wavelength is used [8,12]. All 
existing approaches can only achieve moderate enhancement (< 10 ߪ଴). In addition, they have to 
rely on unique construction of nanoresonators and thus are not generally applicable for an 
arbitrary resonator.  



In this Letter, we show that an extraordinarily large optical cross section of >1000 ߪ଴ could be 
achieved for a single sub-wavelength nanoresonator by embedding it in a material with a near-
zero index. The enhancement does not require any specific construction of the nanoresonators 
and thus works for any nanoresonator. Most importantly, it can be realized in simple dielectric 
structures that are readily compatible with optoelectronic integration. 

 

Fig. 1 (a) A resonator is excited by incident plane-wave (red arrow) and scatters light to other plane waves (green 
arrows). (b) Channels are represented by the dots in the projected kxy-space. More coupling channels are available in 
vacuum as enclosed in the grey sphere (n = 1) than in index near-zero materials as enclosed in the yellow sphere (n 
= 0.02, not drawn to the scale) (c-d) Flow of the Poynting vectors around a nanoresonator in vacuum (c) and index 
near-zero material (d). The resonator (red circle) has a radius of 0.1 µm.  

To understand the mechanism of the cross section enhancement, we first briefly review how the 
conventional approach works based on the restriction of the angular response of a nanoresonator. 
For concreteness, we focus on the absorption cross section. The scattering cross section can be 
understood similarly. Fig. 1(a) shows the schematic of a continuous space containing a single 
nanoresonator. When excited by a plane-wave illumination, photons couple into the 
nanoresonator. At the same time, resonantly stored photons in the nanoresonator also couple to 
plane waves in many other directions, which is the scattered light. The balance of in- and out-
coupling of photons determines the light absorption in the nanoresonator. It can be easily shown 
by a coupled-mode theory that the fewer channels the nanoresonator couples to, the more the 
absorption and the larger the cross section is [16]. The angle-restriction method works by 
carefully arranging the field distribution in the nanoresonator such that it decouples from certain 
channels. As a result, the radiation pattern exhibits a narrower angular distribution and the 
absorption cross section is enhanced above the isotropic limit ߪ଴. The decoupling is typically 
created by symmetry or cancellation of field overlap integral. As such, this method does not 



work well for sub-wavelength nanoresonators because it is difficult to cancel the coupling to 
many directions by arranging the fields within a small spatial size. 

Instead of relying on specially designed nanoresonators to decouple channels, here we directly 
reduce the number of channels by filling the entire space with an index near-zero material. Such 
material has lower density of channels than vacuum. To see such difference, we first introduce a 
method for quantifying the channels in a continuous free space. Each plane wave in a free space 
defines a channel characterized by its unique wave vector. There are always infinitely many 
channels in a continuous free space regardless its index. To overcome this infinity, we adopt a 
mathematical treatment that is often referred as box quantization. First, one starts by considering 
a free space with a lateral periodicity of L in x and y direction. Then, one can take the limit of ܮ ՜  ∞ [12,16] to recover the case of infinitely large free-space. For a given L, the number of 
channels is finite and they can be represented in the k-space as shown in Fig. 1(b). Channels are 
evenly distributed and spaced by ∆݇ ൌ  All coupling channels are located on a sphere with .ܮ/ߨ2
a radius ݇଴ ൌ ݊߱଴/ܿ, where ߱଴ is the resonant frequency and n is the refractive index of the 
continuum. They can also be represented in the projected kxy-space. It is evident that the total 
number of channels is determined by the radius ݇଴, which is linearly proportional to refractive 
index n. In common dielectrics where n > 1, there are more channels available than in vacuum, 
resulting in cross sections smaller than ߪ଴. On the other hand, in an index near-zero material, n ~ 
0 and the number of channels reduces below that in vacuum (yellow sphere in Fig. 1(b)), 
resulting in enhanced cross section.  

The above prediction can be rigorously proved using a free-space coupled-mode theory 
developed in [12]. Here we go through the main results and leave the details to the 
Supplementary Material. The amplitude of photon energy in the nanoresonator can be 
represented by a, which is normalized such that |ܽ|ଶ represents the energy. The amplitude of the 
flux of incoming and outgoing plane waves are described by two N-dimensional vectors ܖܑ܁ and ܜܝܗ܁, respectively, where ܰ ൌ  gives the largest integer smaller than A. The total coupling rate and the intrinsic absorption ۂܣہ ଶ  is the total number of channels. The floor operatorۂ଴ߣ/ܮ݊ہ ߨ2
rate are ߛ௖ and ߛ௔, respectively. The coupled-mode equations are 
ݐ݀݀  ܽ ൌ ݆߱଴ܽ െ ௔2ߛ ܽ െ ௖2ߛ ܽ ൅  ܖܑ܁ࢀࡰ

(2)

ܜܝܗ܁  ൌ ܖܑ܁࡯ ൅ (3) ࡰܽ

The N-dimensional vector D describe the coupling rate to each channel and ࡰାࡰ ൌ  ௖. For anߛ
isotropic resonator, the element of D is given by ߛ௜ ൌ  ௜ is the polar angleߠ ௜ሻ, whereߠݏ݋௖/ሺ2ܰܿߛ
associated to the channel i. The ܰ ൈ ܰ scattering matrix C describes the direct transmission 
between the incoming and outing waves. It satisfies [17] כࡰ࡯ ൌ െࡰ . The absorption cross-
section then can be calculated in the frequency domain as 
ߪ  ൌ כܖܑ܁ ܖܑ܁ െ כܜܝܗ܁ כܖܑ܁ܜܝܗ܁ ௜ሻߠݏ݋ଶܿܮሺ/ܖܑ܁ ൌ כܖܑ܁1 ௜ሻߠݏ݋ଶܿܮሺ/ܖܑ܁ כܖܑ܁௔ߛ ሺ߱ܖܑ܁ࢀࡰכࡰ െ ߱଴ሻଶ ൅ ሺߛ௔2 ൅ ௖2ߛ ሻଶ 

ൌ ଶۂ଴ߣ/ܮ݊ہ 14 ߨ ௖ሺ߱ߛ௔ߛ െ ߱଴ሻଶ ൅ ሺߛ௔2 ൅ ௖2ߛ ሻଶ  ଶܮ

 
 
 
(4)

In the limit of ܮ ՜  ∞, the floor operator can be dropped out. We obtain 



ߪ  ൌ ଶ݊ߨ଴ଶ4ߣ ௖ሺ߱ߛ௔ߛ െ ߱଴ሻଶ ൅ ሺߛ௔2 ൅ ௖2ߛ ሻଶ 
(5)

At the resonant wavelength and with a critical coupling condition ߛ௔ ൌ ௖ߛ , the maximum 
absorption cross section is 
ଷ஽ߪ  ൌ ଶ݊ߨ଴ଶ4ߣ ൌ  ଴݊ଶߪ

(6)

In an index near-zero medium with n ~ 0, an extraordinary large absorption cross section can be 
obtained as shown in Eq. (6). Similarly, in a 2-dimensional (2D) space, the limit of absorption 
cross-section can be obtained as ߪଶ஽ ൌ ఒబଶగ௡.   

The enhancement of optical cross section can also be easily shown by numerically solving 
Maxwell’s equations for a nanoresonator. Figure 1(c-d) compares the power flow of a plane 
wave illuminated on a nanoresonator in vacuum (n = 1) and in a near-zero index material (n = 
0.02). The nanoresonator is an infinitely long dielectric rod with a radius of 100 nm and a 
refractive index of 4. The simulation is performed in 2D. The imaginary part of the refractive 
index of the nanoresonator is tuned to ensure the absorption cross section always reaches its 
maximum. The nanoresonator has a fundamental resonance at the wavelength of 1.05 µm. When 
placed in vacuum, its cross section reaches the 2D isotropic limit ߪଶ஽_଴ ൌ 0.16 µm. The flux 
lines are only disturbed around the nanoresonator itself as shown in Fig. 1(c). In great contrast, in 
a near-zero index material, the flux lines from a large area bend toward the resonator as shown in 
Fig. 1(d).  The absorption cross-section is ߪଶ஽_௡ ൌ 8 µm, which is 50 times of ߪଶ஽_଴ and agrees 
very well with the analytical theory. 



 
Fig. 2 (a) A Gaussian beam scans across a resonator placed on a perfect mirror in vacuum. (b) The top view of the 
spatial intensity of the reflected beam measured at three different positions A, B, and C (also labeled in (a)). Red dot 
indicates the position of the resonator. (c) Similar to (a), but the resonator is in a slab of an index near-zero material. 
Anti-reflection layer is placed on the top of the slab to ensure that there is no external cavity formed by the slab. In 
both cases (a) and (c), the reflected beam profile is obtained at a fixed distance from the resonator. (d) Reflected 
beam profiles at three different positions A, B, and C. A macroscopic shadow created by an extraordinarily large 
cross section emerges in the reflected beam profile. (e) Top panel: A matching Gaussian beam with a waist that is 
same as the size of the shadow in (d). Bottom panel: the reflected beam when shining on the resonator in the index 
near-zero material. The beam is completely absorbed.  

The enhancement for the same index of n = 0.02 is even greater for the 3-dimensional (3D) case, 
where the enhancement factor 1/n2 reaches 2500. Such an extraordinary enhancement could lead 
to macroscopic cross sections for microscopic nanoresonators. We can visualize the cross section 
based on the response of the resonator under a Gaussian illumination. Fig. 2(a) shows the setup 
where a Gaussian beam with a waist of 1 mm scans around a resonator, which is placed on a 
perfect mirror and has a resonant wavelength of 10 µm. Such resonators typically have a size 
that is only a few micrometers. As expected, the reflected beam profile barely changes as it scans 
across the resonator (Fig. 2(b)). One cannot identify the presence of the nanoresonator because 
its maximum absorption cross section is only  ߪ଴ ؆ 16 ൈ 10ି଺ mmଶ, which corresponds to a 
circle with a radius of 2.3 µm.  

If we embedded the resonator in an index near-zero slab with the same Gaussian illumination 
(Fig. 2(c)), the reflected beams (Fig. 2(d)) exhibit a macroscopic shadow with a diameter of 0.25 
mm because of the extraordinarily large absorption cross section ߪ ؆ 0.064 mmଶ. To further 



illustrate such giant cross sections, a matching Gaussian beam with a waist of 0.25 mm (upper 
panel in Fig. 2(e)) is used to illuminate the resonator. The beam is completely absorbed as shown 
by the lower panel in Fig. 2(e). The detailed method is described in the Supplementary Material. 

In above analysis, we have assumed ideal index near-zero materials without specifying their 
implementation. Near-zero indices can be either realized by intrinsic material properties or by 
effective indices of structured medium. The proposed enhancement works for both. While the 
field of index near-zero materials is rapidly evolving [18,19] most current implementations either 
rely on lossy materials, or require complex nano-patterning of dielectric materials [20,21]. It is 
difficult to embed nanoresonators in these materials. Next, we describe a simple approach that 
can be readily implemented in common materials and structures based on external cavities. 

It is important to recognize that one only needs a near-zero phase index in order to reduce the 
number of channels in the k-space. Phase index is the ratio between the wave vector in a medium 
and that in vacuum. Inset of Fig. 3(a) shows a two-mirror structure where the phase index 
approaches zero near the band edge of the fundamental mode (Fig. 3(a)). The number of 
channels between the mirrors greatly decreases at the band edge. From a microscopic point of 
view, the reflection at the mirrors causes destructive interference that removes many channels in-
between the mirrors. Such an effective index near-zero material has also been studied to enhance 
the spontaneous emission [22–24] and cavity quantum electrodynamics [25].  

We then place a nanoresonator inside two mirrors. The resonant wavelength ߣ଴ ൌ 2݀ is chosen 
such that it overlaps with band edge. The analytical derivation of the absorption cross section is 
shown in the Supplementary Material. The effective index can be calculated as  

 ݊௘௙௙ ൌ 1√2 1 െ |ݐ||ݎ|  

 

(7)

Here r, t are the reflection and transmission coefficient of the top mirror. 

 
Fig 3. (a) Schematic of the near-zero phase index structure consisting of two mirrors. The dispersion curve is 
obtained assuming the mirror has 100% reflection. (b) The spectral of the absorption cross-section for mirrors with 
80% (black solid line) and 95% (red solid line) reflectance. Insets show the angular response for both cases.  



For a top mirror with an 80% reflectance (Fig. 3(b)),  ݊௘௙௙ ൌ 0.167  and the maximum 
absorption cross section is enhanced by 36 times compared to the isotropic limit ߪ଴ . For a 
reflectance of 95%, ݊௘௙௙ ൌ 0.08, and the maximum cross-section further increases to 156 ߪ଴. As 
the reflectance increases, the bandwidth decreases because fewer channels lead to weaker 
coupling rates. At the same time, the angular responses become more anisotropic (insets in Fig. 
3(b)) with more absorption in the normal direction and less in off-normal directions.  

Lastly, we use numerical simulations to directly validate the two-mirror design. An isotropic 2D 
resonator is formed by a nano slit in a perfect electric conductor (PEC) (Fig. 4(a)), which has a 
resonant wavelength at ߣ଴ ൌ 1570 nm. The top mirror is a Distributed Bragg Reflector (DBR) 
consisting of 3 pairs of Si and SiO2 quarter-wave layers. The DBR has a peak reflectance of 98%. 
A finite difference method is used to numerically solve the frequency domain (FDFD) 
Maxwell’s equations in a total-field scattered-field configuration. The isotropic limit is ߪଶ஽ ൌߣ଴/2ߨ ൌ 250 nm  while the simulated absorption cross section shows almost 24-fold 
enhancement and reaches 5900 nm (Fig. 4(b)). Independent of the numerical simulation, we also 
calculate the spectrum based on the coupled-mode theory without any fitting parameters. The 
reflection and transmission coefficients of the DBR mirror are directly calculated through 
transfer matrix method. The absorption rate ߛ௔ is calculated by [12]  ߛ௔ ൌ 2݊௜/݊௥߱଴, where ݊௜ 
and ݊௥  are the imaginary and real part of the refractive index of the material in the slit, 
respectively. The coupled-mode theory (red solid line Fig. 4(b)) shows remarkable agreement 
with the direct simulation despite the fact that the spectral line shape is no longer Lorentzian. 
The detailed derivation of 2D coupled-mode theory is available in the Supplementary Material. 
To further verify the predicted anisotropic angular response, Fig. 4(c) shows the scattered field of 
the nanoresonator without (top panel) and with (bottom panel) the top mirror. Indeed, the 
scattered fields become much more directional once the resonator is placed in a phase index 
near-zero structure.  

 
Fig.4 (a) Schematic of the 2D numerical simulation. The resonator is formed by a nano slit on a PEC slab. The depth 
and width of the slit is 110 nm and 20 nm, respectively. The slit is filled with dielectric material, which has a 
refractive index of 3.5-j0.07. The spacing between PEC and the DBR is 785 nm. (b) Simulated absorption cross-
section spectrum (circles) agrees very well with the coupled-mode theory (solid line). (c) The scattered fields from 
the nanoresonator without (upper) and with (lower) the top mirror.  

In conclusion, we theoretically demonstrate that the optical cross section of a single localized 
nanoresonator can be drastically enhanced in phase index near-zero materials. The light 



concentration effect is completely different from conventional lenses systems, where the location 
of the light concentration is always fixed at the focus point. Here light is always concentrated on 
the nanoresonator regardless of its position, providing a versatile platform to create extremely 
strong light-matter interactions at the nanoscale. 
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