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Abstract

The anomalous rod shape in Carbon isotopes has been investigated in the framework of the

cranking covariant density functional theory, and two mechanisms to stabilize such novel shape

with respect to the bending motion, extreme spin and isospin, are simultaneously discussed for the

first time in a self-consistent and microscopic way. By adding valence neutrons and rotating the

system, we have found the mechanism stabilizing the rod shape, i.e., the σ-orbitals (parallel to the

symmetry axis) of the valence neutrons, important for the rod shape, are lowered by the rotation

due to the Coriolis term. The spin and isospin effects enhances the stability of the rod-shaped

configuration. This provides a strong hint that a rod shape could be realized in nuclei towards

extreme spin and isospin.

PACS numbers: 21.60.Jz, 21.10.Re, 27.20.+n
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Strong nuclear deformations provide us an excellent framework to investigate the funda-

mental properties of quantum many-body systems. Experiments have provided evidence in

heavy nuclei for the existence of the so-called super- [1, 2] and hyper- deformation [3–5],

i.e., strong deformation with width-to-length ratios of 1:2 or 1:3. For light nuclei, there

have been indications that even more exotic states above 1:3 might exist in light N = Z

nuclei due to the α cluster structure. However, there is still no firm evidence so far, despite

intensive experimental searches.

The realization of anomalously deformed rod shape in light nuclei has been a long-

standing objective of nuclear structure physics. Due to the antisymmetrization effects and

the weak-coupling nature, it has been known to be difficult to stabilize the rod-shaped con-

figuration in nuclear systems. The linear-chain structure of three α clusters was suggested

about 60 years ago [6], and was used to explain the structure of the Hoyle state (the second

0+ state at Ex = 7.65 MeV in 12C), which plays a crucial role in the synthesis of 12C from

three 4He nuclei in stars [7]. However, this state was later found to be a gas-like state with

strong mixing of the linear-chain configuration and various other three α configurations [8]

and recently reinterpreted as an α-condensate-like state [9, 10]. Therefore, various theoret-

ical and experimental studies of linear-chain states has been carried out in other N = Z

nuclei [11] such as 16O [12–17], 24Mg [18, 19], etc.; further investigations are needed to

confirm, however.

To stabilize the linear chain configuration with respect to the bending motion, some

extra mechanisms are needed to be introduced. One of the candidates is the increase of

isospin by adding valence neutrons. Even if the linear-chain configurations are difficult to

be stabilized in N = Z nuclei, higher stability is possible in the neutron rich side. In

particular, if the neutrons occupy the so-called σ orbital (orbital parallel to the symmetry

axis), an elongated shape for the core would be favored to lower the energy of the valence

neutrons [20, 21]. This is because, originally σ orbitals are higher nodal orbitals, but their

energies are lowered by the prolate deformation. Eventually prolate deformation is induced

when the neutrons occupy the σ orbitals. The effects of the valence neutrons on cluster

structure has been extensively investigated both from experimental [22, 23] and theoretical

sides [24–27]. Another possible mechanism is the increase of the angular momentum by

rotating the nucleus rapidly because the linear chain configuration with a large moment of

inertia should be favored with a large angular momentum. In this case, the competition
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between the nuclear attractive and centrifugal forces [28] would be very important for the

stabilization of the linear chain state.

Until now, most of the theoretical analyses of the linear chain structure have been per-

formed using the conventional cluster model with effective interactions determined from the

binding energies and scattering phase shifts of the clusters [29]. Therefore, it is highly desir-

able to have investigations based on different approaches, such as density functional theories

(DFTs). Since the DFTs do not a priori assume the existence of α clusters, it would provide

more confidence in the presence of exotic cluster structure as a result of calculations. Such

calculations are not easy, and so far, have only rare examples including the linear-chain

configurations of 16,20C [26], 16O [14–17] and other light N = Z nuclei [30]. Even now, the

knowledge on the stabilization of the linear-chain state is insufficient. To clarify the nature

of linear-chain states, it is important to explore the two mechanisms of large isospin and

high spin in their stabilization.

The cranking model [31] is a reliable method for the description of states with good

angular momentum. It is a first order approximation for a variation after projection onto

good angular momentum [32], and has been extended to provide a very successful self-

consistent description of rotational nuclei all over the periodic table. Covariant density

functional theory (CDFT) exploits basic properties of QCD at low energies, in particular,

symmetries and the separation of scales [33]. CDFT consistently treats the spin degrees of

freedom, includes the complicated interplay between the large Lorentz scalar and vector self-

energies induced on the QCD level [34], and naturally provides the nuclear currents induced

by the spatial parts of the vector self-energies, which play an essential role in rotating nuclei.

The cranking CDFT [35–37] has provided an excellent description of ground states and the

rotational excited states all over the periodic table with a high predictive power [38, 39]. It

has been shown recently that relativistic models are especially suited for the self-consistent

microscopic description of cluster phenomena in nuclei [40].

In this Letter, both two mechanisms, adding neutrons and rotating the system, are taken

into account in a microscopic and self-consistent way for the first time for the stability of the

linear chain state with respect to the bending motion. The cranking covariant DFT [35–37]

will be used to investigate the stability of the anomalously deformed rod shape in C isotopes

toward the extreme isospin and spin.

The covariant DFT starts from a Lagrangian and the corresponding Kohn-Sham equa-
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FIG. 1. (color online) Angular momenta as functions of the rotational frequency for C isotopes

from A = 12 to A = 20.

tions have the form of a Dirac equation with effective fields S(r) and V µ(r) derived from

this Lagrangian. In the cranking model, these fields are deformed and the calculations are

carried out in the intrinsic frame rotating with a constant angular velocity vector ω which,

in this work, points in a direction perpendicular to the symmetry axis z,

[α · (p− V ) + β(m+ S) + V − ω · Ĵ ]ψk = ǫkψk. (1)

Here Ĵ = L̂+ 1

2
Σ̂ is the total angular momentum of the nucleon spinors, the fields S and V µ

are connected in a self-consistent way to the densities and current distributions, for details

see Refs. [35, 36]. The iterative solution of these equations yields single-particle energies,

expectation values of the angular momentum, energy, quadrupole moments, etc.

In this work, the energy density functional DD-ME2 [41] is adopted. Since the level den-

sity of the single-particle levels for the present rod-shaped states is rather low, the cranking

Relativistic-Hartree-Bogoliubov calculations show that the pairing correlations could be ne-

glected safely. The calculations are free of additional parameters. Equation (1) is solved in

a 3D Cartesian harmonic oscillator basis [42] with N = 12 major shells to provide converged

results.

In the present calculations, we first solve Eq. (1) for 12C without rotation iteratively by

assuming the initial fields S and V with a very large prolate deformation. In this way,

one self-consistent solution with 3α linear-chain configuration for 12C has been obtained.

Taking the obtained potential as the initial potential, self-consistent calculations have been

performed for C isotopes at various rotational frequencies. With the increase of spin and
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isospin, both the protons and neutrons are treated self-consistently by filling the orbitals

according to their energy from the bottom of the well. As a result, Figure 1 shows the ob-

tained expectation values of the angular momentum as functions of the rotational frequency

for C isotopes from A = 12 to A = 20. One can easily classify these isotopes into three

groups according to the behavior of their angular momenta. The first group contains 12,13,14C

-6

-4

-2

0

2

4

6

12C

z 
(fm

)

(a)

0.000
0.026
0.052
0.078
0.104
0.130
0.156
0.182
0.208
0.234
0.260

-3 -2 -1 0 1 2 3
-6

-4

-2

0

2

4

6

12C

(b)

15C

(c)

-3 -2 -1 0 1 2 3

15C

(d)

y (fm)

20C

(e)

-3 -2 -1 0 1 2 3

20C

(f)

FIG. 2. (color online) Proton density distributions in y-z plane (x direction is integrated) calculated

using the cranking covariant density functional theory for 12C, 15C, and 20C at the rotational

frequencies ~ω = 0.0 MeV (a), (c), (e) and ~ω = 3.0 MeV (b), (d), (f).
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FIG. 3. (color online) Single-proton energies (in rotating frame) as functions of the rotational

frequency for 12C, 15C, and 20C. Each orbital is labeled by the corresponding Nilsson quantum

number of its maximal component. The solid and dashed lines denote the single-particle states

with the positive and negative parity, respectively. The solid circles denote the occupied orbitals.
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whose angular momenta are very close to each other. It reveals from the linearly increasing

tendency of the angular momenta that the moments of inertia are nearly constant; the slope

is almost constant. The values of the moments of inertia are about 2.5 (MeV)−1
~
2 which

are very close to the corresponding classical values for a rigid rotor (around 3.0 (MeV)−1
~
2).

The four nuclei 15,16,17,18C constitute the second group. Here, the backbending phe-

nomenon, an abrupt increase of the moments of inertia, is shown clearly around ~ω = 2.0

MeV, which indicates some structure changes with the increasing angular momentum. It

should be noted here that for the lower spin part before the backbending, a rod-shaped

solution requires a unchanged proton occupation which could be achieved by tracing the

proton levels [35, 39] (see below). By adding more neutrons, the third group is built with

the nuclei 19C and 20C. Similar to the first group, the angular momenta here also increase

linearly with the rotational frequency. This means that the moments of inertia here are

nearly constant as well, but their values (around 4.6 (MeV)−1
~
2) are much larger than that

of 12,13,14C; this is due to that the additional valence neutrons in 19C and 20C contribute

more angular momentum to the system (see below).

Since the neutron number is changing for different C isotopes, it is convenient to show the

structure of the rod-shaped C isotopes by using their proton density distribution. The proton

density distributions for the same group differ only in barely visible detailed structures.

Therefore, we show one sample for each group, i.e., 12C, 15C, and 20C in Fig. 2 illustrating

the large deformation and the general structure produced by the three clusters. One could

see that the extremely deformed rod-shape structure exists in all cases, and in particular an

exotic structure of 3α-linear-chain is very clearly seen.

Due to the fact that the rod-shape structure in 12C persists with increasing spin and

isospin as shown in Fig. 2, it is important to check whether the proton configurations are

stabilized against particle-hole deexcitations. To this end, the single-proton levels in the

rotating frame together with their occupation are shown in Fig. 3 for the nuclei 12C, 15C,

and 20C. Each level is labeled by the corresponding Nilsson quantum numbers Ω[NnzΛ] [43]

of its maximal component, and the positive and negative parities are represented by the

solid and dashed lines, respectively. It is worthwhile to mention that levels with small Λ

values correspond to densities close to the symmetry axis, while those with large Λ values

correspond to densities away from the symmetry axis.

For the nucleus 12C, all the levels are doubly degenerate at ~ω = 0.0 MeV, and are split
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into two levels with the increasing rotational frequency due to the violation of the time-

reversal symmetry. Moreover, the occupied proton levels here are always the lowest levels in

energy from ~ω = 0.0 MeV to ~ω = 3.0 MeV. This indicates that the configuration is quite

stable against any particle-hole deexcitations.

For the case of 15C, however, the unoccupied proton level 3/2[101] gets lower than the

occupied 1/2[220] level at small rotational frequency, maybe due to the strong attractive

interaction among protons and neutrons in the p-shell. Note that here one has to trace the

proton levels to stabilize the calculation, and thus the occupied 1/2[220] levels are indicated

by thin lines in Fig. 3. This means that the linear configuration is not well stabilized, since

the proton at the level 1/2[220] could easily jump to the level 3/2[101] to get lower energy.

Nevertheless, the occupied level 1/2[220] is decreasing with the increasing frequency ~ω due

to the Coriolis effects [44]. When the frequency ~ω is larger than 2.0 MeV, this level become

lower than the unoccupied level 3/2[101], and thus the configuration is getting stabilized.

Similar to 12C, the configuration of 20C is also very well stabilized. The single-proton

level scheme of 20C is very similar to that of 12C except for the magnitude of the energies.

Due to the neutron-proton correlations, the single-proton energies of 20C are much lower

than those of 12C.

The stability of the rod-shape states is strongly related to the valence neutrons which are

treated self-consistently by filling the neutron orbitals according to their energy. In Fig. 4,

the valence neutron densities outside the core 12C, approximated as the difference between

the neutron and proton densities ρn − ρp, for
15C and 20C are shown as examples.
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FIG. 4. (color online) Valence neutron distributions in y-z plane (x direction is integrated) defined

as the difference between the neutron and proton densities for 15C and 20C at the rotational

frequencies ~ω = 0.0 MeV (a), (c) and ~ω = 3.0 MeV (b), (d).

For 15C, the valence neutrons present an oblate distribution with two concentrations

7



along the y-axis at ~ω = 0.0 MeV. Such a structure would hinder the formation of a rod

shape along the z-axis, and thus it prevents the rod-shaped proton configuration from being

stabilized. At ~ω = 3.0 MeV, however, the valence neutron changes to present an prolate

distribution which is conducive to form a rod-shaped state, and thus the rod-shaped proton

configuration could be well stabilized. Such change essentially arises from the change of the

occupation of the neutron orbitals as shown in Fig. 5. Specifically, the 1/2[330] orbital drops

rapidly with the rotational frequency and starts to be occupied at higher angular momentum.

Such an orbital, usually called as σ-orbital, would contribute a prolate distribution to the

neutron density.
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FIG. 5. (color online) Neutron single-particle energies (in rotating frame) as functions of the

rotational frequency for 15C. The open and solid circles denote respectively the occupied orbitals

before and after the level crossing near ~ω = 1.75 MeV.

The single-neutron levels of 20C have the same order in energy as that of 15C, and thus

the σ-orbital 1/2[330] is always occupied even at ~ω = 0.0 MeV. This is quite helpful to

the formation of the rod shape, and as a result, the rod-shaped proton configuration of 20C

could be well stabilized.

The ground-state energies for the C isotopes from A = 12 to A = 20 have also been

calculated in the present framework and compared with the data [45]. It is found that the

calculated ground-state energies are in very good agreement with the data with a root-mean-

square deviation of around 2.7 MeV. One can also easily extract the excitation energies at

~ω = 0.0 MeV of the predicted rod-shaped states which are estimated to be in between

around 13 MeV and 18 MeV. These values are much lower than the values suggested in the
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previous work (around 25 MeV) [20]. Note that the present microscopic calculations do not

assume the existence of an alpha particle a priori, and thus include more degrees of freedom

in a larger model space.

Apart from the ground-state properties, it has been shown that after the collective corre-

lations are treated properly by angular momentum projection, the low energy spectroscopic

properties of Carbon isotopes can also be reproduced quite well [46]. As a first order approx-

imation for the variation after angular momentum projection [32], the cranking model has

been extremely successful in the field of nuclear high spin phenomena for many years. For

cluster bands in light nuclei, as in Ref. [47], it is achieved a very good agreement between the

calculated two-alpha cluster bands in Be isotopes and the data. Therefore, it would be very

interesting to validate the present results obtained from the microscopic cranking CDFT in

comparing them to experiment. The calculated energy spectra for C isotopes are given in

Ref. [47] for direct comparison with future experimental results. Note that a moment of

inertia of ~2/2I ∼ 120keV was reported by Freer et al. in Ref. [48] for 14C. This moment

of inertia just corresponds to our results when neutron(s) occupies σ-orbit around the 3α

chain (green and red colored lines in Fig. 1 of Ref. [47]). The 3α configurations slightly

bended from the linear-chain have been discussed in many works, e.g., in Refs. [27, 49], while

not in the present work due to the fact that a cranking CDFT framework with octupole

deformation is still not available up to date. However, at the bandhead, there are evidences

that the rod shape in carbon isotopes could still be realized with the octupole degrees of

freedom in both the non-relativistic [26] and relativistic [30] density functional theories.

In summary, we have discussed the rod-shaped configuration in C isotopes, which has

been known to be very difficult to stabilize for a long time, by using the cranking covariant

density functional theory. The major advantages of the present framework include (1) the

cluster structure are investigated without assuming the existence of clusters a priori; (2) the

nuclear currents are treated self-consistently; (3) the density functional is universal for all

nuclei throughout the periodic chart, and the present investigation is expected to be reliable

and to have predictive power; (4) a microscopic picture can be provided in terms of intrinsic

shapes and single-particle shells self-consistently.

Extreme isospin and spin are considered to be two key mechanisms for the stability of the

rod-shaped configurations. In the present work, we have investigated the rod-shaped carbon

isotopes, for the first time, by treating these two degrees of freedom simultaneously in a
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self-consistent and microscopic way. By increasing the isospin and/or spin, the appearance

of the anomalously deformed rod shape can be clearly seen in the C isotopes. Through the

effects from the Coriolis term, the σ-orbital, which is very important for the rod shape, comes

down in energy and enhances the stability of the rod-shaped configuration with respect to

the bending motion. Although this important neutron configuration for the rod shape (σ

orbitals) was the excited one in our early work [20], now it is shown to become the lowest

one around rod shape in the fast rotating frame.
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