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The Third Law of Thermodynamics constrains the phase diagram of systems with a first-order
quantum phase transition. For zero conjugate field, the coexistence curve has an infinite slope at
T = 0. If a tricritical point exists at T > 0, then the associated tricritical wings are perpendicular
to the T = 0 plane, but not to the zero-field plane. These results are based on the third law
and basic thermodynamics only, and are completely general. As an explicit example we consider
the ferromagnetic quantum phase transition in clean metals, where a first-order quantum phase
transition is commonly observed.

PACS numbers:

First-order phase transition are ubiquitous in nature,
the solid-to-liquid and liquid-to-gas transitions being the
most commonly observed ones. Another common exam-
ple of a first-order transition is the ferromagnetic tran-
sition below the Curie temperature as a function of an
external magnetic field. First-order transitions are char-
acterized by a coexistence curve in the phase diagram
along which the two phases coexist in thermodynamic
equilibrium. (The coexistence curve may be the projec-
tion of a higher-dimensional coexistence manifold into a
particular plane in the phase diagram.)

It has long been known that the curvature of the coex-
istence curve is determined by the discontinuities of cer-
tain observables across it. The Clapeyron-Clausius (CC)
equation relates the slope of the coexistence curve in the
pressure-temperature (p -T ) plane to the discontinuities
of the entropy and the volume [1]:(

dp

dT

)
H

=
∆s

∆v
, (1)

where ∆s = s1 − s2 and ∆v = v1 − v2 with s1,2 and v1,2
the specific entropy and volume per particle, respectively,
in the two phases. For definiteness, let 1 and 2 label the
ordered and disordered phases, respectively, and for later
reference we indicate that an appropriate external field
H, if any, is held constant in taking the derivative.

The CC equation (1) and its analogs in different planes
of the phase diagram are very general, as they rely only
on basic thermodynamic arguments. In this Letter we
show that for quantum phase transitions, when combined
with the Third Law of Thermodynamics, they provide in-
teresting constraints on the shape of the phase diagram.
We will consider a pressure-driven transition at T = 0
that is first order, remains first order at low T , and turns

Figure 1: Schematic phase diagram showing a line of first-
order transitions at low T separated from a line of second-
order transitions at higher T by a tricritical point (TCP).
In a nonzero conjugate field H tricritical wings emerge from
the TCP. These are surfaces of first-order transitions that are
bounded by lines of second-order transitions and terminate
in two quantum wing-critical points (QWCP) in the T = 0
plane.

second order at higher T via a tricritical point (TCP).
The schematic phase diagram in the space spanned by
T , p, and H, where H is the field conjugate to the or-
der parameter, is shown in Fig. 1. As we will see, the
detailed shape of this phase diagram at low T is con-
strained by thermodynamics. Our arguments leading to
this conclusion are completely general; however, as an
explicit example we will discuss the quantum ferromag-
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netic transition in clean metals [2]. Another example of a
first-order quantum phase transition with a TCP in the
phase diagram is the Ising antiferromagnet dysprosium
aluminum garnet [3].

We are interested in a system with T , p, and H as in-
dependent variables. Denoting the order parameter by
M , the appropriate thermodynamic potential is the gen-
eralized Gibbs free energy [4]

G̃ = U − TS + pV −HM
= µN , (2a)

whose differential is

dG̃ = −SdT + V dp−MdH + µdN . (2b)

Here S, V , and µ are the system’s entropy, volume, and
chemical potential, respectively, and N is the particle
number. From Eqs. (2) we obtain the Gibbs-Duhem re-
lation

dµ = dg̃ = −sdT + vdp−mdH , (3)

where g̃, s, v, and m are the generalized Gibbs free en-
ergy, entropy, volume, and order parameter per particle,
respectively. On the coexistence curve the chemical po-
tentials of the two phases must coincide. Using this con-
dition with Eq. (3) at fixed external field leads to Eq. (1).
An analogous argument yields(

dT

dH

)
p

= −∆m

∆s
. (4)

The CC equations (1,4) are completely general. When
applied to a quantum phase transition, the Third Law
provides the additional constraint ∆s(T → 0) → 0. To
be specific, let us assume that in either phase the en-
tropy vanishes as s(T → 0) = γ Tn. In particular, if
the phases are Fermi liquids (see below) then n = 1 and
γ is the specific-heat coefficient. For asymptotically low
temperatures we thus have(

dT

dp

)
H

=
1

Tn

∆v

∆γ
, (5a)(

dT

dH

)
p

=
−1

Tn

∆m

∆γ
. (5b)

In addition, we obtain from the equilibrium condition in
conjunction with Eq. (2b) a third CC equation,(

dH

dp

)
T

=
∆v

∆m
. (5c)

These three CC equations are the basis of our discussion.
Let us start by briefly discussing the obvious coexis-

tence region in the T -p plane, which is labeled “ordered”
in Fig. 1. The first-order transition across this plane,
which is driven by the external field, does not involve

any change in either entropy or specific volume. We
thus have ∆s = ∆v = 0. Equations (5b, 5c) then imply
(dH/dT )p = (dH/dp)T = 0. This identifies the H = 0
plane as the locus of the coexistence curves. (dT/dp)H=0,
Eq. (5a), is indeterminate, which is consistent with the
fact that any curve in the H = 0 plane below the tran-
sition temperature is a coexistence curve. The CC equa-
tions thus correctly describe the coexistence plane, but
do not provide any nontrivial information.

This changes as we consider the other coexistence sur-
faces, viz., the tricritical wings. Obviously, we have
∆m > 0 across any first-order transition, but now ∆s
and ∆v will not be zero. To find ∆v, we turn to scaling
theory. Scaling is often thought of as valid only at second-
order transitions. However, Fisher and Berker [5] have
shown that finite-size scaling considerations allow for the
definition of a diverging length scale even at a first-order
transition. Consequently, a classical first-order transition
can be considered a limiting case of a second-order transi-
tion, and the homogeneity laws, exponent relations, etc.,
that are known from the scaling description of second-
order transitions still hold. This formalism has recently
been generalized to the case of quantum first-order tran-
sitions [6], and we now apply it to the problem under
consideration. Let r = (p − p∗)/p∗ be the dimensionless
distance from the transition at T = 0. Then the general-
ized Gibbs free energy obeys a homogeneity law [6]

g̃(r,H, T ) = b−(d+z) Φg̃(r bd+z, H bd+z, T bz) . (6)

Here b > 0 is the length scaling parameter, Φg̃ is a
scaling function, and we have made use of several expo-
nent values that characterize a first-order quantum phase
transition (see Ref. 6 for details): z is the relevant dy-
namical exponent [7], the inverse correlation length ex-
ponent has its largest possible value 1/ν = d+z, and the
scale dimension of the field, [H] = βδ/ν, reflects the fact
that the order-parameter exponents are β = 0, δ = ∞,
such that βδ = 1. This is a generalization of the scal-
ing description of classic first-order transitions given by
Fisher and Berker [5]. Differentiating g̃ with respect to
r ∝ p, we see that the scaling part of the specific volume,
v = ∂g̃/∂p = ∂g̃/∂r, has a zero scale dimension. This
implies a discontinuity of the specific volume across the
transition, and a corresponding δ-function contribution
to the compressibility κ = −(∂v/∂p)/v. This is in direct
analogy to the latent heat at a classical first-order tran-
sition and can be interpreted as a “latent volume” at a
pressure-driven QPT, i.e., the volume changes by a finite
amount upon an infinitesimal change in pressure [8]. We
also note that differentiating with respect to r again we
obtain κ ∝ |r|−1; see Ref. [5] for an interpretation of this
power-law divergence at a first-order transition in terms
of finite-size scaling. The compressibility is positive in
thermodynamic equilibrium, and we thus have ∆v > 0
across any coexistence curve contained in the wings. The
only remaining question is the sign of ∆γ. For a transi-
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Figure 2: Measured phase diagram of UGe2, with the same
notation as in Fig. 1. The main figure is adapted from Ref. 10;
the squares represent data points, the lines and surfaces are
guides to the eye. The inset shows the H = 0 plane with data
from Ref. 11. Note the extremely steep drop of the Curie tem-
perature past the tricritical point. The ferromagnetic phase
consists of two phases, FM1 and FM2, separated by a line
of first-order transitions at low temperatures that ends in a
critical point (CP).

tion from an ordered phase to a disordered one, one would
naively expect ∆γ < 0. We will adopt this expectation
for now and give a more detailed discussion below.

From Eq. (5a) we conclude that the (∂T/∂p)H < 0,
i.e., the slope of any coexistence curve at fixed H is neg-
ative, and it approaches −∞ as 1/Tn for T → 0. Simi-
larly, Eq. (5b) yields (∂T/∂H)p > 0, and it approaches
+∞ as 1/Tn for T → 0. This means that the wings
are necessarily perpendicular to the T = 0 plane, and
in particular the coexistence curve in zero field has an
infinite slope at the QPT. Finally, Eq. (5c) implies that
(∂H/∂p)T is positive and finite, which implies that the
wings are tilted in the direction of the disordered phase
and are not perpendicular to the p -axis.

We now turn to an explicit example that illustrates all
of the above considerations, namely, the quantum phase
transition in clean metallic ferromagnets [2, 9]. In this
case, the exponent n in Eqs. 5 is n = 1, and the dynam-
ical exponent z in Eq. (6) is z = 1. There is a second
dynamical exponent z = 3, but for our purposes z = 1
yields the dominant contribution (see Refs. [2, 6] for a
detailed discussion of this point). The order parameter
m is the magnetization, H is the external magnetic field,
and the phase diagram is generically observed to have the
topology shown in Fig. 1. The features discussed above
are indeed universally observed in all cases where the tri-
critical wings have been mapped out in detail. As an
example, we show the experimentally determined wings
in UGe2 in Fig. 2; for other examples, see Ref. 2. Note
the extremely sharp drop of the Curie temperature for

pressures above the tricritical pressure that is apparent
in the inset. Also of interest is the transition inside the
ferromagnetic phase (from FM1 to FM2), which is first
order at low temperatures. Our considerations apply to
this transition as well, and the steep drop of the transi-
tion temperature is again consistent with an infinite slope
of the coexistence curve at T = 0.

We now return to the issue of the sign of ∆γ, or more
generally ∆s, across the coexistence curve. From Eq. (3)
we see that (∂s/∂p)T,H = −(∂v/∂T )p,H = −vαp, with
αp = (∂v/∂T )p/v the thermal expansion coefficient. An
increase in entropy with increasing pressure thus implies
αp < 0. Returning to Eq. (5a), and remembering that
∆v > 0 since the compressibility is necessarily positive,
we see that a decreasing Curie temperature with increas-
ing pressure implies a negative thermal expansion coeffi-
cient, and vice versa. Consistent with this, the thermal
expansion coefficient at low T is indeed negative in UGe2
[12], MnSi [13], and ZrZn2 [14], which all are low-T ferro-
magnets with qualitatively identical phase diagrams. It
is interesting that αp < 0 by itself implies that the high-
pressure phase must be the paramagnetic one. We also
note that the volume is discontinuous if the coexistence
curve is crossed at fixed p as a function of T as well as
at fixed T as a function of p. This is intuitively obvi-
ous and also follows from Eqs. (3, 6). Accordingly, αp

at the first-order transition has a δ-function contribution
that reflects the same “latent volume” as the correspond-
ing δ-function contribution to the compressibility. This is
consistent with the experiment by Kabeya et al [12], who
observed a pronounced negative peak in αp at the tran-
sition, which they attributed to a broadened first-order
transition.

While in most quantum ferromagnets hydrostatic pres-
sure destroys the ferromagnetic order, there are systems
in which the opposite occurs. An example is YbCu2Si2,
which is paramagnetic at ambient pressure, but becomes
ferromagnetic upon the application of hydrostatic pres-
sure of roughly 10 GPa [15], see Fig. 3. The thermody-
namic arguments presented above then predict that αp

in this material, at this pressure and at low temperature,
must be positive. The thermal expansion data of Ref. 16
are consistent with this prediction, although not quite
conclusive, as they focused on a higher temperature re-
gion. There also are materials where hydrostatic pressure
drives the system away from ferromagnetic order, while
uniaxial stress favors it; an example is UCoAl [17]. This
can be understood be realizing that in many solids the
thermal expansion coefficient is anisotropic to the point
of being positive along some crystal axes, but negative
along others [18].

We finally briefly discuss an explicit equation of state
that has been used to describe the qualitative phase di-
agram of metallic quantum ferromagnets and leads to a
schematic phase diagram as shown in Fig. 1 [19]. It is
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Figure 3: Temperature-pressure phase diagram of YbCu2Si2.
Ferromagnetism is induced by hydrostatic pressure p > Pc ≈
8.25Gpa. From Ref. 15.

derived by minimizing a generalized Landau functional

f(m) = −Hm+ rm2 + wm4 ln(m2 + T 2) + um4 (7)

with respect to the magnetization m. Here m, H, and
T are measured in suitable microscopic units, and r, u,
and w are parameters of the generalized Landau theory.
The physical origin of the term with coupling constant
w is due to soft fermionic excitations that couple to the
magnetization; this has been discussed in detail before [2,
20, 21] and will not be repeated here. In zero field, H = 0,
the logarithmic term leads to a first-order transition at
r = r1 = w e−1−u/w where the magnetization value is
m1 =

√
r1, and to a tricritical point at Ttc = e−u/2w. The

coexistence curve can easily be obtained explicitly [19];
here we just quote the asymptotic behavior for r → r1,

T (r → r1) =
1√
w

(r1 − r)1/2 (8)

which yields

dT/dr|r→r1 = −1/2wT , (9)

in agreement with the general conclusions drawn above
from thermodynamics, see Eq. (5a) and the related dis-
cussion. In the presence of a small magnetic field, one
finds for the coexistence curve in the T = 0 plane

H = m1

(
1 +

3

11

u

w

)
δr +O(δr2) , (10)

where δr = r − r1. This reflects the linear slope of the
tricritical wings with respect to the r-axis that follows
from Eq. (5c). A more involved, but elementary analysis
shows that the tricritical wings are perpendicular to the
T = 0 plane everywhere. We stress that these proper-
ties are not tied to the specific physical mechanism that

underlies the free-energy function (7); they must be true
for any model that leads to a first-order quantum phase
transition and correctly reflects thermodynamics.

We conclude with some additional discussion points.
(1) The most often observed shape of the phase diagram
in quantum ferromagnets, with increasing hydrostatic
pressure driving the system into the disordered phase,
is not what one might naively expect. In a fluid analogy,
this is equivalent to what is observed in H2O and H2S,
while in most fluids increased pressure stabilizes the or-
dered phase. In quantum ferromagnets the latter can
also occur, see Fig. 3, but it is not common. As we have
shown, this feature of the phase diagram is tied to the
sign of the thermal expansion coefficient, which tends to
be negative in low-temperature ferromagnets. Regardless
of whether hydrostatic pressure induces or destroys fer-
romagnetism, Eq. (5c) implies that the tricritical wings
must always extend in the direction of the paramagnetic
phase. (2) All actually measured tricritical wings show all
of the structural features discussed above, as they must,
since the former hinge on basic thermodynamics only.
However, occasionally schematic drawings of wings in
the literature violate these thermodynamic requirements:
They show wings that are perpendicular to the pressure
axis and/or not perpendicular to the T = 0 plane. (3)
The discontinuity of the specific-heat coefficient across
the first-order transition, 0 < ∆γ < ∞, has an inter-
esting implication for the dynamical critical exponents
in the system. Since the static and dynamic specific-heat
exponents ᾱ and zc are related by a hyperscaling relation
ᾱ = ν(zc−d), with ν the correlation-length exponent and
d the spatial dimensionality of the system [6], a discon-
tinuous specific-heat coefficient (ᾱ = 0) implies zc = d.
This is indeed the value of zc within an explicit theory
that describes the first-order transition, see Ref. 6.
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