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We measure the shear viscosity for a resonantly interacting Fermi gas as a function of temperature
from nearly the ground state through the superfluid phase transition into the high temperature
regime. Further, we demonstrate an iterative method to estimate the local shear viscosity coefficient
αS(θ) versus reduced temperature θ from the cloud-averaged measurements 〈αS〉, and compare αS

to several microscopic theories. We find that αS reveals features that were previously hidden in
〈αS〉.

Condensates of bosons or fermion pairs exhibit nearly
frictionless hydrodynamic flow near and below a critical
temperature, Tc, which is a defining and striking macro-
scopic property of superfluids. Just above Tc, where the
fluid is normal, a regime of extremely small, but finite,
shear viscosity is observed. A universal lower bound for
the ratio of shear viscosity to entropy density, h̄/(4π kB),
is conjectured for this normal fluid regime [1]. Below
Tc, the behavior of the shear viscosity of bosonic and
fermionic fluids is quite different. In bosonic 4He [2],
there is an increase in the shear viscosity as the temper-
ature decreases below Tc, which is believed to arise from
single particle bosonic excitations that couple to the col-
lective (Nambu-Goldstone) modes [3, 4]. In fermionic
3He [5], the shear viscosity decreases rapidly to zero as
the temperature decreases below Tc, most likely as a re-
sult of the suppression of fermionic excitations at low
temperatures [4].

An optically trapped, ultra-cold Fermi gas of atoms
tuned near a collisional (Feshbach) resonance provides a
new paradigm for the study of shear viscosity in quan-
tum fluids [6, 7], enabling experimental access not only
to Bose and Fermi superfluid systems, but also to a reso-
nant, universal regime, where the gas has both fermionic
and bosonic properties. Near a Feshbach resonance [8, 9],
a bias magnetic field applied to a trapped cloud tunes
the interaction strength between atoms in two different
hyperfine states, denoted spin-up and spin-down. Well
above resonance, atoms in different spin states are weakly
attractive, and the system can be described by Bardeen-
Cooper-Schrieffer (BCS) theory. Well below resonance,
pairs of spin-up and spin-down atoms are tightly bound
into weakly repulsive molecular bosons, where Bose-
Einstein condensate (BEC) theory is applicable. On res-
onance, there exists a very strongly interacting state of
matter, the unitary or universal Fermi gas (UFG), which
exhibits scale-invariant hydrodynamic expansion [10].

We report the measurement of the shear viscosity of a
UFG as a function of temperature below the superfluid
transition temperature, testing the degree to which its
transport properties align with those of Bose and Fermi
quantum fluids. By observing the expansion of a cigar-
shaped cloud, we first obtain the shear viscosity averaged

over the density profile. In this cloud-averaged data, we
observe a rapid decrease in the shear viscosity as the
temperature is reduced below Tc. We then demonstrate a
method for inverting the cloud-averaged viscosity data to
estimate the local shear viscosity as a function of reduced
temperature, revealing features that were previously hid-
den in the cloud-averages. This inverted data for the local
shear viscosity is compared to recent theories of the shear
viscosity for a UFG in the transition region [4, 11–17],
which differ in the predicted contributions of pair corre-
lations, fermionic excitations, and bosonic excitations at
low temperature. Using the measured local shear viscos-
ity and the measured local entropy density [18], we also
determine the local ratio of the shear viscosity to the en-
tropy density, which is compared to the universal lower
bound conjectured by Kovtun, Son, and Starinets [1].

In the experiments, a Fermi gas of 6Li atoms is pre-
pared in a 50-50 mixture of the two lowest hyperfine
states and confined in a cigar-shaped optical trap with an
elliptical transverse profile. The trap oscillation frequen-
cies are (ωx, ωy, ωz) = 2π × [2210(4), 830(2), 64(0.5)] Hz.
The cloud is tuned near a broad Feshbach resonance and
cooled by evaporation [19] to nearly the ground state.
The final temperature of the gas is controlled by altering
the optical trap lowering curve used for evaporation.

The cloud is abruptly released from the trap and im-
aged from two orthogonal directions at a time t after
release to determine the cloud radii σi(t) in all three di-
rections, i = x, y, z. There is evidence that the superfluid
and normal fluid components of a UFG move together in
hydrodynamic expansion [10], which is consistent with
the existence of exact scaling solutions for a two-fluid
model of the collective modes [20]. We therefore assume
that the cloud radii expand according to a single-fluid
model, where σi(t) = σi(0) bi(t). The hydrodynamic ex-
pansion factors bi(t) obey universal evolution equations
that include viscous forces and heating [10, 21]. Using
the known trap parameters, the cloud radii data are fit
using the cloud-averaged shear viscosity coefficient 〈αS〉
as a free parameter. The initial cloud radii σi(0) and
〈αS〉 are self-consistently determined from the transverse
aspect ratio σx(t)/σy(t) using only one expansion time t
for one measurement [21]. For the new data presented in
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FIG. 1. Trap-averaged shear viscosity coefficient 〈αS〉, where
the shear viscosity is η = αS h̄n. The solid blue points show
the 〈αS〉 data versus reduced temperature θ0 at the trap cen-
ter, after binning the raw data (inset) in θ0. The vertical
dashed line denotes the critical temperature at the trap cen-
ter θc = 0.167(13) [18]. The red solid line is obtained by
integrating αS(θ), which is estimated from the 〈αS〉 data us-
ing an image processing algorithm.

this paper, which extends to very low temperature, this
method greatly increases the temperature resolution, see
Fig. 1 (inset).
The measured shear viscosity coefficient is related to

the shear viscosity, η, which has a dimension of momen-
tum/area, and hence is given in natural units of h̄ n,
where n = n(r) is the local density. A local shear vis-
cosity coefficient αS is then defined by η ≡ αS h̄ n [6].
As noted above, the measurements determine a cloud-
averaged shear viscosity coefficient 〈αS〉, which is defined
by

〈αS〉 ≡
1

Nh̄

∫
d3r η =

1

N

∫
d3rnαS(θ), (1)

where N is the total number of atoms. As shown previ-
ously for a UFG, αS(θ) is a function only of the local re-
duced temperature θ ≡ T/TF (n), where TF (n) is the lo-
cal Fermi temperature. Further, 〈αS〉 is temporally con-
stant as the cloud expands, i.e., it is equal to the cloud-
averaged initial value with n → n(r, t = 0) [6, 7, 21].
Fig. 1 shows the trap-averaged shear viscosity coeffi-

cient 〈αS〉 as a function of the reduced temperature at the
center of the trap θ0 = T/TF (n0), where n0 ≡ n(r = 0).
Temperature is determined from the measured cloud pro-
file. The measured trap potential [22] and the equation
of state measured by Ku et al., [18] are used to determine
the local density as a function of reduced temperature at
the cloud center, θ0, i.e., n(r, θ0). This relates the mea-
sured cloud profile to θ0.
We now show that the trap-averaged data of Fig. 1

for 〈αS〉 versus θ0 can be inverted to estimate the lo-

cal shear viscosity coefficient αS(θ) as a function of the

local reduced temperature θ = T/TF (n). For a single
measurement of 〈αS〉 at θ0, the reduced temperature
θ = θ0 (n0/n)

2/3 has a minimum θ0 at the trap center
and increases as the density n decreases. Therefore, a
single measurement contains information over a range
of reduced temperatures, which enables an estimate of
αS(θ) from the trap-averaged data, by using an Iter-
ative Shrinking/Thresholding (IST) algorithm, a tech-
nique that is commonly used in imaging processing [23].
However, 〈αS〉 is formally divergent. For large

θ, αS(θ) → α3/2 θ
3/2 ∝ T 3/2/n, where α3/2 =

45π3/2/(64
√
2) ≃ 2.77 [12]. Then, in the low density

region, the integrand nαS(θ) = n0 αS(θ0) is indepen-
dent of density. Fortunately, energy conservation assures
that the integral must be finite and kinetic theory shows
that the shear viscosity η = h̄ n αS → 0 as the density
vanishes [11].
In our data inversion procedure, we circumvent this

problem using a simple approximation, which assures
that the local shear viscosity scales properly as T 3/2

in the low density (but still hydrodynamic) part of the
cloud. This is accomplished by experimentally deter-
mining a finite volume, which is bounded by a cut-off
radius, Rc. We find Rc from 〈αS〉 data in the tem-

perature region where 〈αS〉 has a universal θ
3/2
0 depen-

dence [6, 7, 21]. Using 〈αS〉 = c0 + c1 θ
3/2
0 to fit the

data yields c0 = 0.34(4) and c1 = 3.60(15) [24]. The
cutoff radius Rc is then found from Eq. 1, which requires
α3/2 4πR

3
cn0/(3N) = c1 [22, 24]. We assume a gaussian

density profile, with central density n0 = N(π 2
3 〈r2〉)−3/2.

Then we find Rc = 0.98 〈r2〉1/2 [24]. Here, 〈r2〉 is
the (temperature-dependent) mean square radius of the
trapped cloud in scaled coordinates [22]. Making the sim-
plest scale-invariant assumption, we take Rc = 〈r2〉1/2 at
all temperatures [24].
Now we assume a piecewise representation of the local

shear viscosity, using a discrete set of reduced tempera-
tures θi, with αS(θ) = αi for θi ≤ θ ≤ θi+1. Eq. 1 is
then converted into a system of linear equations, with
the jth equation corresponding to the jth measurement
of the trap-averaged shear viscosity 〈αS〉j with a reduced
temperature θ0j at the trap center,

〈αS〉j =
∑

i

Cjiαi

Cji ≡
∫ Ri+1(θ0j)

Ri(θ0j)

4πr2 n(r, θ0j) dr, (2)

For each θi, (θi/θ0j)
3/2 = n(0, θ0j)/n(Ri, θ0j) determines

Ri(θ0j). We can write Eq. 2 in matrix form,

〈αS〉 = C ·α. (3)

The IST algorithm [23] removes high frequency noise
associated with measurements, but leaves enough reso-
lution to determine the smooth behavior and significant
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transitions in the local shear viscosity [24]. Our imple-
mentation of the IST algorithm takes the form,

αm+1 = (1−β)αm+βΨ[αm+C
T(〈α〉−C ·αm)], (4)

where m is the iteration number and αm+1 is determined
from the previous m-step, αm. Here, 0 ≤ β ≤ 1 is an
adjustable parameter that determines the speed of con-
vergence of the iterative process, CT is the transpose of
C, and Ψ(x) is a non-quadratic denoising function. We
choose Ψ(x) to be a three-point moving average. The
local shear viscosity converges slowly from an initial seed
α0, which we take to be the high temperature approx-
imation for the local shear viscosity, discussed above,

2.77 θ
3/2
i .

For our viscosity data, Eq. 4 is robust in the choice of
β. We monitor the change in α as a function of iteration
number m in order to determine convergence. For α

shown in this paper, where β = 0.1, the IST algorithm
converges after m = 50 iterations. The supplemental
material provides a review of our implementation of the
IST algorithm [24].
Fig. 2 shows the local shear viscosity coefficient αS(θ)

obtained using Eq. 4 and the seed function 2.77 θ3/2. For
large θ, the local shear viscosity converges to the two-
body Boltzmann equation limit α = 2.77 θ3/2 [12] by con-
struction, i.e., by our choice of Rc(θ0). As θ is decreased
to θ ≃ 1, αS(θ) rises above the high T prediction. Since
the viscosity is inversely proportional to the collision rate
in the two-body limit, this result is consistent with a de-
creasing collision rate arising from Pauli blocking as the
gas starts to become degenerate. Above the critical tem-
perature, we see that α is larger than 2.77 θ3/2. As a
consistency check, we integrate the αS(θ) determined by
the IST algorithm over the cloud volume up to Rc, us-
ing Eq. 1. This yields the red curve in Fig. 1, which fits
the measured trap-averaged viscosity coefficients with a
normalized χ̃2 = 1.0.
Fig. 3 shows αS(θ) in the low temperature regime,

which is compared to microscopic theories. We observe
that αS(θ) rises with increasing temperature much more
sharply than the cloud-average 〈αS〉 of Fig. 1. The
measured maximum slope α′

S(θ) may be limited by the
resolution of our inversion procedure, as explored in
more detail in the supplemental material [24]. Below
Tc, our estimated local shear viscosity is in remarkably
good agreement with theoretical prediction based gen-
erally on pseudogap-BCS theory, which includes contri-
butions from non-condensed pairs [4]. The QMC [16]
result captures the qualitative shape, but is closer to
the two-body limit than our estimate near the super-
fluid transition. Predictions using a diagrammatic ap-
proach, starting from the exact Kubo formula [15], are
well above the two-body limit, closer to our estimates,
and in good agreement with the estimated slope of α(θ)
above θ = 0.3. At the very lowest temperatures mea-
sured, the estimated αS is consistent with zero. We find

FIG. 2. Local shear viscosity coefficient αS (blue dots) versus
reduced temperature θ = T/TF (n). The prediction from the

two-body Boltzmann equation [12] 2.77θ3/2 (black curve) is
used as a seed function to initialize the iteration procedure
and as a constraint at large θ.

FIG. 3. Extracted local shear viscosity coefficient αS (blue
dots) versus reduced temperature θ = T/TF (n) near the su-
perfluid transition temperature, where the local shear viscos-
ity is η = αS (θ)h̄n. The vertical dashed line denotes the
critical temperature θc = 0.167(13) [18]. Blue bands denote
the standard error corresponding to the statistical uncertainty
in 〈αS〉; Red solid line from Guo et al., Ref. [4]; Green dotted
curve from Enss et al, Ref. [15]; Purple dot-dashed curve from
Wlazlowski et al., Ref. [16]; Black-solid line prediction from

kinetic theory αS = 2.77 θ3/2 [12].

the interesting result that the slope α′

S(θ) of the inverted
data has a peak at the superfluid transition tempera-
ture, Fig. 4, which is robust with respect to our choice
of parameters in implementing the IST algorithm. This
is reasonable, as we expect that the superfluid fraction
varies most strongly near θc.
Next, we determine the ratio of the local shear viscos-

ity to the local entropy density, using the entropy data
of Ref. [18]. The ratio is compared to the lower bound
conjectured by Kovtun, Son, and Starinets [1], as shown
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FIG. 4. Slope of the shear viscosity coefficient αS versus re-
duced temperature θ, showing a peak at Tc. The vertical
dashed line denotes the critical reduced temperature.

FIG. 5. Ratio of shear viscosity η to the entropy density s,
in units of h̄/kB , versus reduced temperature θ = T/TF (n).
Blue dots are the ratio of the local shear viscosity, obtained
from our matrix inversion method, to the entropy density
measured in Ref. [18]. Blue bands denote the standard er-
ror for quadratically combining the statistical uncertainties
in 〈αS〉 and in s. The vertical dashed line denotes the critical
reduced temperature and the horizontal dashed line at 1/(4π)
indicates the KSS lower bound [1].

in Fig. 5. We find that the ratio has a relatively weak
dependance on θ for a range of temperature above the su-
perfluid transition temperature, a shallow minimum for
θ ≈ 0.4 in the normal fluid regime, where of η/S = 0.5,
≃ 6 times the predicted lower bound [1]. These features
are in qualitative agreement with the predictions of Enss
et al, Ref. [15]. In addition, there appears to be a mini-
mum in the ratio below Tc and an upturn in the ratio as
T → 0. However, as both the entropy and the viscosity
are rapidly approaching zero in this region, the error as-
sociated with both of the measured quantities does not
permit an unambiguous determination.

We have presented a precision measurement of the
cloud-averaged shear viscosity as a function of reduced
temperature at the cloud center 〈αS〉, from well below the

superfluid phase transition to the high temperature limit.
We observe a rapid decrease in the measured shear vis-
cosity below Tc, which suggests that the universal shear
viscosity of a unitary Fermi gas is closer in character to
that of fermionic 3He than to bosonic 4He. Further, we
estimate the local shear viscosity coefficient αS(θ) from
cloud-averaged data using an image processing method.
We assume that the viscous forces in the expanding cloud
act within a finite effective radius Rc, which we exper-
imentally determine to assure convergence to the two-
body Boltzmann equation limit at high temperature. Al-
though determination of the systematic uncertainty in
the magnitude of αS(θ) arising from this choice of Rc is
difficult [24], our estimated local shear viscosity coeffi-
cient αS(θ) already reveals qualitative features that are
hidden in 〈αS〉, and can be directly compared to predic-
tions for homogenous systems.
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[13] G. Rupak and T. Schäfer, Phys. Rev. A 76, 053607

(2007).
[14] E. Taylor and M. Randeria, Phys. Rev. A 81, 053610

(2010).
[15] T. Enss, R. Haussmann, and W. Zwerger, Annals Phys.

326, 770 (2011).
[16] G. Wlaz lowski, P. Magierski, and J. E. Drut, Phys. Rev.

Lett. 109, 020406 (2012).
[17] G. Wlaz lowski, P. Magierski, A. Bulgac, and K. J.

Roche, Phys. Rev. A 88, 013639 (2013).
[18] M. J. Ku, A. T. Sommer, L. W. Cheuk, and M. W.

Zwierlein, Science 335, 563 (2012).
[19] K. M. O’Hara, S. L. Hemmer, M. E. Gehm, S. R.

Granade, and J. E. Thomas, Science 298, 2179 (2002).

[20] Y.-H. Hou, L. P. Pitaevskii, and S. Stringari, Phys. Rev.
A 87, 033620 (2013).

[21] E. Elliott, J. A. Joseph, and J. E. Thomas, Phys. Rev.
Lett. 113, 020406 (2014).

[22] We transform to spherical symmetry in the usual way
with scaled coordinates, ω̄x̃i ≡ ωixi, where ω̄ ≡
(ωxωyωz)1/3, so that r2 =

∑
i x̃

2

i , i.e., the effective trap
potential energy is then a function of r. For a harmonic
trap,

∑
i mω2

i x
2

i /2 = mω̄2 r2/2.
[23] J. Bioucas-Dias and M. Figueiredo, IEEE Transactions

on Image Processing 16, 2992 (2007).
[24] See the online supplemental material for a detailed de-

scription of the iterative data inversion method, which
includes Refs. [25, 26].

[25] J. E. Thomas, J. Kinast, and A. Turlapov, Phys. Rev.
Lett. 95, 120402 (2005).

[26] L. Luo and J. E. Thomas, J. Low Temp. Phys. 154, 1
(2009).


